Sunday, 16 November 2025

被青梅竹馬抓來(略) (15):測驗當天狀態不好忘光光也是正常的

Character design: @kuonyuu, Illust: @音羽屋 commissioned by forretrio. Pixiv
Editing and re-posting are prohibited // 無断転載、無断使用禁止です

當天晚上庫里斯就開始批改測驗。原因無他,不過是晚上空閒得很罷了。

在他完成地下城的委託後沒幾天就有人向他傳話,表示學園教師不應該擅自跑進地下城也不應該另外接工作,下次請務必先行報備。下指令的人不用想也知道是誰,所以他只能乖乖聽話。本來想著偶而可以去練練手的他現在只能獨守這個豪華的教師宿舍。

他從幾次作業批改裡悟到一個道理:學生的成績越好,批改的難度就越小。正確的答案只要一個剔號就完了,錯的答案還要他費心力找出錯誤的地方寫下批注。很多同學都會犯下同一錯誤,那就相當於罰他抄寫同一批注十幾遍。

這次他留意到自己好像根本就沒多少機會寫批注。他本來以為這是偶然,但第一份如此、第二三四五份也如此,這大概已經側面說明了學生的表現。

考定義的第一題大家的答案當然都一樣,到了第二題才能看出學生之間的分別。庫里斯預設了兩個答案:一是按照題目敘述找出對應具體某種魔法並判定其屬性,二是論證就算有了名字和結果也沒有辦法確定其本質所以存在不確定性。作業裡有類似的問題,那時題目給出的是魔法的作用和結果,自然省去了辨認本質這一環節。測驗裡面題目的前提是名稱和結果,雖說不是只有結果但跟結果沒有大差別,那麼學生們又會怎樣回應呢?

大部分學生都還記得他講過不能單從結果下判斷,但接下來的論證就變得五花八門:有人像庫里斯在課堂上那樣試圖證明有複數魔法可以達到同一結果,只是他們忘記了題目上已經寫了魔法名稱;更聰明的學生根據給出的魔法名稱推論即使有複數魔法能達到此效果,這堆魔法都應該屬於同一屬性,因此答案就只能是該屬性。也有更簡單的回答比如用舉例引證給出的魔法至少有可能是某種或某幾種屬性,但以上所有回答都比庫里斯所預設最低限度的回答--無法確定屬性--要複雜得多。令人欣慰的是,雖然他的學生成功把幾行就能答完的題目寫成了論文,他們的觀念大體上並沒有錯,每個人都拿到很高的分數。

如果說絕大部分學生都無傷通過了前兩題是預料之中的話,第三題也有好表現就不禁讓人刮目相看了。比起第二題的半開放式問題,第三題要求的是用固定框架來進行分析。庫里斯在課堂上示範過,只是當時的例子不是這次考的。學生們真的懂得按著框架來嗎?這對二三年級的學生來說輕而易舉,但對那些沒接觸過正統教育的新生來說無論上課如何一遍又一遍地示範過,自己能不能照樣做出來永遠是兩回事。這種反複磨練才能使用的文字能力只是平民學生全方位的劣勢之一而已。

然而這些學生用自己的表現證明了自己天生神力,這種有步驟可循的問題好像完全難不倒他們。比起第二題的百花齊放,他們第三題的回答非常整齊而且與預設答案相差無幾。當然要拿到滿分還是頗為困難的,因為題目要求的是按著框架來,那就不能錯過框架裡面的每一步。在這裡就能看出學生程度高低:最強的學生完全按照框架回答、次一等的學生用上了框架但是漏了部分步驟而沒法完全論證,即使是像艾基爾這種文科能力最弱的學生也沒有離題而是嘗試把問題放到框架裡面。按照第三題答對大半才能在考試合格的標準來看艾基爾還是不合格沒錯,但第一個測驗已經有這個成績的話還會怕他熟練後不會做題嗎?

第四題的批改同樣比庫里斯想象中快,原因是很多人都隨便寫點不值一看的東西上去就算了,或者乾脆地留白不作答。不少學生早就知道考試的玩法,這題一看就是正常學生不可能挑戰的題目,自然也不值得他們作答。雖然在測驗裡也不試一下有點可惜,但他不得不承認這樣也省了他很大功夫。當然了,那些認真回答了第四題的卷子改起來一點都不簡單。

蘇菲在第四題評分準則裡面列出了不同的預設答案和各自己的評分方法,可是就沒哪位學生寫出來跟預設答案一樣。第四題考的是傳說中的虛構魔法,學生不可能代入自己經驗來解釋。你以為這樣就只能按著題目資料回答嗎?在這種情況下他們鬼扯起來更離譜。庫里斯的學術訓練也沒到可以輕鬆對每一種回答作出判斷,加上他又是第一次批改這問題。如果答題的學生多一點他大概還能在相似回答之間比較,現在他只能花時間逐個回答慢慢看。

在看似認真挑戰第四題的回答之中不少也是亂秀一通其實只拿下一點點分數的。這也不能怪他們,這不是隨便一個學生用心上課就能回答的問題。真正拿到高分的只有兩三個貴族學生,其中就包括了拿滿分的公主殿下。學園長或許沒錯,公主殿下其實不需要他的指導,就算換一個教師她還是會拿到一樣成績。但在傳授知識以外他就真的甚麼也做不了嗎?

不管這是因為他的教學起了效果還是這群學生的天分如此過份,這份測驗證明了他有資格在這裡混下去,這才是最重要的。不論是有沒有能幫上公主殿下的地方還是對其他學生的教育,如果沒法一直拿出可以壓住外人聲音的實績的話一切理想和計劃都毫無意義。

*

發還測驗卷當天他捧著三個大蛋糕進教室,學生在短暫的疑惑眼光後發出了巨大的歡呼。即使是那些吃遍王都的少年少女們,又有誰能拒絕這種邪惡至極的甜美誘惑呢?這是他給學生們和自己的小獎勵。蛋糕來自他從王都下午荼指南裡挑出來的一家名店。店家本來根本不想接這種急單,但聽見對方是魔法學園的時候立馬就變臉答應,要是在學園裡得到好評的話肯定對自己的名氣有幫助。

測驗拿了個滿意的分數老師又請吃蛋糕,這一課過得格外輕鬆,糖分的加成也讓他們清楚記住了庫里斯以測驗題目為例答題要注意的部分。

至少對絕大部分學生來說都是如此,但安娜貝爾是個例外。

安娜貝爾坐在課室的一角,沮喪地看著自己的試卷。雖然她分到一大塊水果蛋糕,新鮮的水果加上輕盈的忌廉讓人停不下來,但這些完全沒法消解她惆悵的心情,原因就是她測驗成績。

第一題沒問題,第二題她不小心用上了不屬於古典觀的論述被扣了分。第三題更慘,她完全不知道自己當時怎樣想的,瞎寫一通換來是一堆紅色底線和一個大問號。第四題還好,她成功從資料中抓到幾個能用的魔法特性所以拿了一點分數,但這也救不了她前面悲慘的表現。在老師的解說下她越發覺得自己當時狀態一定是差到不行才有了這災難性的發揮,連艾基爾也差點合格差點讓她欲哭無淚。

安娜貝爾出身王都的中產家庭。父親是醫生,母親是草藥專家。她擅長的是水屬性,從小就展現上過人的魔法天賦,家人也投入了大量資源助她成長。她家給她買進各種書籍和魔法道具、讓她小時候讀上正規的學校、還花重金請了家教來教她魔法,為的就是讓她有機會進魔法學園。她家知道學園很看重魔法上的特長,正好安娜貝爾在在家人的薰陶下對魔藥產生了興趣,所以請來的家教都有著醫療背景。這當然不便宜,但她家還是可以負擔得起的。

這樣的她在學園的入學試中表現優異,她的特長也讓她順利通過面試進到魔法科裡去。從開學到現在她仔細觀察了同班的每一位同學,得出的結論是自己在魔法科裡不算差。比上肯定打不過那幫小貴族和小天才:那些貴族之後得到的資源顯然不是她家咬咬牙就能擠出來的,而那些有著真正魔法天賦的人也不是她有了家教培養就能扯平的。可是她怎樣也應該能贏那些僥幸進來、沒受過甚麼正規教育的人啊!艾基爾就是最明顯的例子。她承認她一對一的情況下她絕對打不過艾基爾,但她實在不覺得對方在讀書考試方面能好到哪去。她並非討厭艾基爾或者把對方設成假想敵,她只想告訴自己在這個班級裡她不是墊底的而已。

開學以來老師教的一直都是古典元素觀。除了還在用古典框架練習魔法的下三濫以外,這是正常的魔法師沒啥興趣的課題,可是她出於好奇在書籍裡面看過。老師教得很快還把一堆東西丟到預習而且說是預習其實是自習,但她還是能跟得上老師的進度。反觀班上有幾個學生不時就兩眼茫茫一臉根本聽不懂的樣子,更加坐實了她比下有餘的想法。

但是這次測驗狠狠地打了她的臉。老師說了大部分人的表現都比預期好,除了一兩個人。這一兩個人不就是指她嗎!雖然沒有被公開處刑,但自尊心使安娜貝爾更沒法抬頭面對自己的卷子。蛋糕在她口中索然無味,老師的解題每一句都像在嘲笑她的愚鈍。老師在卷子的結尾指示她有空去老師辦公室見他,她滿腦子都是她會不會被老師嫌棄責罵。

她沒在在午休時段去找老師。放學後她獨自躲進了圖書館,確定沒有其他同學看到她後才偷偷摸到老師辦公室面前敲了敲門。

「請進。」

映入眼簾的是大到有點空蕩的辦公室。老師不在正中央的辦公桌,扭頭一看才發現他在窗邊的沙發上,沙發旁的矮桌上正放著幾片蛋糕,想也知道是今天早上剩下來的。蛋糕旁邊放著茶壼和杯子,顯然他在享用這些蛋糕。

「安娜貝爾同學,快過來吧~」老師揮手著她過來,他手上還拿著叉子:「這些蛋糕都是今天早上新鮮做出來的,奶油放久了會變得難吃,現在不吃掉太可惜了。我下課前問還有誰想吃,結果他們都太矜持了不敢要,現在都便宜你囉。」

她有點僵硬地坐到老師對面,老師找來另一套餐具給她:「今天你吃的是哪個口味呢?要不要試試別的?」

「我……吃的是水果口味。」

「哦哦~那個好像最熱門呢,現在就剩下一塊了。你要再試來一塊水果口味的嗎?還是想試試別的?」他在矮桌下放摸出另一個杯子,為她斟上一杯熱荼。

「謝謝老師。」心中有很多想說的話,但面對蛋糕的誘惑她還是聽老師的話吃了起來。除了水果蛋糕以外,另外兩個蛋糕分別是蘋果蛋糕和紅茶蛋糕。蘋果蛋糕上面以烤乾的蘋果脆片作點綴,放了整整半天還能保持脆脆的口感和香味,下面帶有蘋果泥的慕斯則帶來了清新的衝擊;紅茶蛋糕看上去跟一般的奶油蛋糕沒兩樣,一口下去才感受到那濃烈的茶香。明明聞不到卻又好像真的在喝茶一樣讓口鼻同時享受茶的餘韻,她不禁讚歎蛋糕師傅手藝的高明。

她一邊吃一邊偷偷留意著老師的反應。只見老師都在吃蛋糕沒空理會她,她也只好一起跟著吃蛋糕。她提醒自己要慢慢品嘗,可是這味道實在讓她停不下來。自己的懊悔和對老師的愧疚此刻化為純粹的食慾,兩口蛋糕一口茶很快就把蛋糕給掃光。

老師給她再倒了一杯茶:「蛋糕好吃嗎?」

她十分率直的回答:「嗯,很好吃,從來沒吃過這麼好吃的蛋糕。」

「那就好。偷偷跟你說一個秘密,其實我挺喜歡吃甜點的。可是像我這樣一個人去吃的話實在有點尷尬,而且沒法試到足夠多的品項。」老師笑著回應:「但如果是請你們吃的話我就可以一次點好幾種,而且還能聽到你們對每一家店舖的評價。這樣我就知道哪一家最好吃了。」

「如果……老師每次都選這個等級的甜點,我想我沒法分出高下呢。」

「其實不然。有些人認為食物應該用各種標準檢驗過才能分個高下。我的看法更簡單,只要遵從內心的選擇就好了。打個比方,這三件蛋糕你覺得最好的是哪件呢?我給你五秒。五--四--」

才喊到四她就衝口而出:「水果蛋糕。」

「我也認同呢。用上大量的新鮮水果這件事本身就不便宜,可以吃得出每一顆水果都在最新鮮的狀態,這必然是精挑細選過的。鮮奶油要做得如此輕盈才能成為水果的襯托,讓人一口接一口停不下來。從這三個蛋糕剩餘件數看來其他同學也有著同樣的想法呢。」

在一番只談美食不講正事的對話裡安娜貝爾可見的放鬆了下來,似乎不再糾結自己測驗的事。老師這時才切入正題:「所以,我想你過來找我是有甚麼要談的吧?」

剛才的蛋糕攻勢讓她不知道她應該道歉還是辯解:「我……」

「噓。」老師的手指放在嘴唇上:「你覺得,這個課題你會還是不會呢?」

「……會。」

「那麼,早上的解題環節你都聽得懂嗎?」

「……會,老師都講得很清楚。」

「如果有一份差不多的考卷,你覺得你會做嗎?」

「會。」

「那就沒問題了哦,幫自己找個借口就好。嗯~比如說那天身體不好,剛好東西都忘光了?」

「哈?」面對這個轉折她有點轉不過來,但老師的眼神無比認真。

「跟我說一遍:我那天身體不好,剛好東西都忘光了。」

「……我那天身體不好,剛好東西都忘光了。」

「很好,我明白了。」老師站了起來:「身體不好加上第一次測驗壓力大,東西忘掉也沒辦法。我知道你下次一定能好好表現的,對吧?」

彷彿剛才老師的指令還在她腦海中,她反射性回答道:「會的。」

「那就好,有不明白的地方記得要問我或者其他同學哦。」

……

安娜貝爾離開辦公室時整個人都是懵的。

她真的讀懂了那些教的東西嗎?再來一次的話她真的能考好嗎?如果是早上的她絕對不敢這樣說。但是老師讓她親口說了出來,她就有種感覺自己真的能做到。為了不讓自己的自我感覺再次落空,她從今天起就打算加倍努力學習,這樣才對得起老師。

或者對得起他買的蛋糕。

***

當初我聽到日本台灣有一種甜點叫水果三文治後我就覺得很奇怪,濕答答的水果夾在麵包裡誰要吃?一看才知道他們用大量奶油把水果包起來夾在白麵包裡,這就合理多了。其實水果三文治其實跟水果蛋糕只是一線之差,分別只是外層為麵包還是蛋糕而已。再退一步把微鹹的白麵包換成偏甜的餐包或者生麵包,本質上跟水果蛋糕已經沒分別了。

不得不說,甜點作為籠絡手段真是百試不膩。

在我讀過的那所大學裡有個傳統,老師會在最後一課帶個蛋糕來,學生一邊吃蛋糕一邊上課。作為回報,學生也會在考試中拿個好分數證明自己沒白吃這蛋糕。這些蛋糕多半都是工廠生產等級的超市貨,但這個行為的意義當然不在蛋糕好吃與否本身。至於庫里斯這種看起來就要一直買高級蛋糕回來的人真的很壞,把標準拉高到這樣叫別的老師怎樣活的下去啊。

為了不在後記放上過多廢話,我就只說另一件趣事好了:我曾經參與過一項研究,內容是一些創新的評分方法。其中一個是這樣的:把所有學生對同一題的回答放進一個池裡面,電腦會一直抽出一對對回答出來。評閱者的任務不是打分,而是單純回答左右兩個回答哪個比較好。而且這個比較不需要精細的準則而更像是直覺的判斷,最好在三十秒內就看完一對。透過演算法我們就能把這堆回答排成一個完整的名次,而實驗顯示這個名次和實際的分數名次十分接近,而且這樣決定名次花費的時間還能大幅降低。

這會是未來的改卷潮流嗎?我不知道,但我大概更偏好傳統的改分方法吧。至少傳統方法才能針對錯處讓學生作出改善,使用比較法的話就有太多資訊缺失了。之所以提到這個評分方法是因為庫里斯在批改第四題的時候覺得每個回答都相差甚遠,所以他沒法拿出一個通用的評分框架來應對所有回答只能逐個處理。我在想,在這個回答之間沒有可比性而且樣本數不足的情況下,使用比較法可行嗎?

最後也是例牌的插圖時間。這次是音羽屋老師的作品!要求的題目是校園裡某個角落的庫里斯,而音羽屋老師選了植物園。植物園在蠻多作品都出現過,比如哈利波特的霍格華兹或者火紋風花雪月的學園裡溫室都是個標配,同樣地在這個魔法學園裡有溫室或植物園一點都不奇怪。唯一奇怪的肯定是一個冒險為主的魔法師應該不會在暑假跑去植物園吧(望)。

Monday, 10 November 2025

9/11/2025: 吱爪藍道大混戰

樂天吱以4:1擊敗中信爪贏下2025台灣大賽。

雖然我本人一直有關注棒球,但我還真沒寫多少棒球相關的文章在這裡。也就2019和24的P12、2023的WBC和2019的TS而已。我以為我在CPBLTV草創期(2014-)寫了一堆,結果是沒有嗎。

不過怎樣也好,這是桃猿六年以來第一次奪冠,而且比賽過程精彩絕倫,怎樣也值得慶祝留念一下。要留念還有一個更深層次的原因,那就是這支冠軍隊伍有點過去六年五冠Lamigo的味道。

很多人對吱吱的印象只剩下四割大王那個彈力球年代,也就是那個狂轟濫炸,沒輸十分都覺得有希望追回來的年代。可是別忘了更早時期時球隊不是這樣的。正如我足球挑上車路士是因為喜歡當年的一比零主義一樣,我挑上Lamigo同樣是因為其一比零主義一樣。棒球當然不太可能一直一比零,但是用幾把大鎖在七八九局把領先牢牢鎖住也是同一原理。那時的Lamigo擁有救援王米吉亞,有出道即巔峰(出賽場次上)的香腸還有Boyo,這種投手上的安心感是一比零主義所追求的。

來到2025,我們發現川岸強教練治下的牛棚投手一個比一個強。這已經不是今年才有的事了,去年P12的種花鐵牛棚我吱實在功不可沒。你以為P12那批投手倒光就沒戲了嗎?沒想到陳陳大丈夫上演老將不死,不但沒有受國際賽影響球速還持續進化,今年投出0字開頭WHIP的鬼神成績;R豪是回歸正常水準,但有不算季末疲勞的話整季ERA可能只有0.4的小朱頂上。就算牛棚要吃到三四局,賴胤豪、呂寶、R豪等就算不是大魔神也還是值得信賴的等級。今年例行賽我吱一分差勝率為七成,誇張到把另外五隊的一分差勝率打成五成以下,靠的就是這鐵到不行的牛棚。

更可怕的是,牛棚在例行賽末段本來累得東歪西倒,來到季後賽居然又回春了。莊77從12強回來以後就沒好過,現在居然能150連發,在速球夠強的掩護下讓他屢屢下莊,甚至只在牛棚一直熱身都能為隊友上buff;賴胤豪則是152、153連發,這好像也是前所未見的數字吧?

當然,要兌換牛棚壓制力的前提是有個能吃長局數的的洋投在前面頂著。吱吱受制於老虎狀態不佳、克羿等新一代土投未成熟,加上三號洋投不行,季賽就算有發揮也是有一場沒一場。來到季後賽就不同了,威能帝和魔神樂齊齊特攻,就問你怕不怕?喵喵也還好,爪爪現在看到我吱的洋投怕是要有ptsd了。十年前有明星中零日無安打,十年後有二洋投風火輪,種花始終還是那個得洋投者得天下的聯盟。

甚麼?你說對面的羅戈李博登也很厲害?

那就比拼拼看看誰比較肯為球隊粉身碎骨吧。

也許是劉家和紅中留下來的風氣加上一代接一代的精神傳承,我總覺得我吱的凝聚力是數一數二好的。球員之間的互動,會互相為其他球員發聲(比如超級喜歡怒摔頭盔),甚至不少洋將也能快速融入,甚至成為球隊氛圍的一部分,這也是他們肯在季後賽拼命的重要原因。你以為威能帝挑戰賽中1日關門是新鮮事嗎?明星當時也是1467,而且別忘了同場風火輪還有感情好到父子檔一起來台的蘭斯佛(直到他被紅中玩壞丟掉)。這裡不是世界大賽,洋將未必有足夠動機為了冠軍而燃燒,甚至把自己的潛力一併燒掉。我吱能持續吸引和養出這種洋將,對球隊戰績實在功不可沒。

一日球迷看到這裡,大概覺得我吱這次奪冠實屬理所當然、水到渠成對吧?

不是喔,不是這樣喔。

挑戰賽威能帝G2被打爆退場,G4九局下面對守護神(?)落後三分,兩個都是基本可以打包回家的局面;台灣大賽被爪爪以洋投碰洋投每場都鎖個六七局,G2在2:1領先下要面對無人出局滿壘的死局,G5打到七局還被對面雙洋投鎖到落後四分。偏偏每次我吱都能過關直至奪冠,機率之低令人咋舌,用另一個說法則是彰顯出這隊強勁的實力和打不死的精神。有了這些大場面加持,本來每年都有一個的冠軍含金量立刻拔高,我想這會成為種花球迷心中的經典之一吧。

嘛,這篇其實應該早在一星期前剛打完就發出來的,卻因種種原因拖到現在。這一星期的時間裡發生了足以讓種花球迷徹底忘記台灣大賽的系列賽,也就是道奇對藍鳥的頂上對決。G3十八局和兩位長中繼燃盡的表現、G6那球卡死在縫上的二壘安打、G7的陽春砲連發加鎖血山本……奇跡多得像是喝水一樣,就連MLB官網的win probability都在不停翻轉,不讓讓人懷疑到底這些低概率事件是真的低概率,還是只要球員夠強張力夠高就會發生?

嘛,我感覺兩邊都是。

一個低概率的事件要發生首先要有合適的前置條件,還要在投打對決和攻守對決出現指定的結果才行。前置條件可以泛指任何應該決定的條件,小至投手用球數、該局分數,大至比賽勝負都包括在內。季後賽最特別的一點就是其注碼(stakes)不是例行賽可比擬的。例行賽只要代價夠大,輸一場是可以接受的,在季後賽則完全不可能。

在這種高注碼對決下雙方自然帶著短期決戰的想法進行調度,超高強度的消耗下投打呈現又菜又強的二象性:你以為是打得好嗎?其實是投手沒力了;你以為是投得好嗎?說不定打者也快累到揮不動了。這種現象從G3後半段開始不停出現,比賽充斥著大量打上得點圈然後以平凡滾地/飛球出局作收的半局,用另一角度看最後的關鍵得分就是這海量機會中出來少數最後得分的半局。正常是低概率的事件在樣本夠多的情況下概率也許沒想象中低。

再仔細看的話這些高張力的play注碼高得可以說是一個play定勝負,無論結果倒向任何一方球隊勝率都會產生極大變化的那種play。吱爪G2八下領先一分無人出局滿壘和道奇G7九下平手一出局滿壘的局面。只要做錯了就會掉分,掉分就會輸掉這場,輸掉這場就會輸掉系列失去冠軍,這可是萬鈞之重的責任壓在單一個play裡。你是球員的話你會怎樣做呢?照平時的方法去防守,只要不到被記E的程度就好?多看福本伸行的賭博漫畫就知道,當注碼是如此巨大時人們總是為了那一點點「最佳結果」的機率而放手一博--在棒球場上的play也不例外。馬傑森空手接小拋球直傳一壘製造雙殺,Pages跑了123呎暴扣隊友接球,這都是我們平時不會看到的play,卻因為張力夠高而出現。更進一步說,也許大谷的連九上壘也是季後賽才會出現的奇景吧?說不定一直延長的話藍鳥不會IBB而是乾脆正面對決,輸了就算了。

當然一切前提都是球員平時足夠努力,成果才會顯示在賽場上。這些play成功率也許沒想象中難,但一定要有足夠訓練,加上季後賽帶來的額外腎上腺素影響下,流傳後世的各種play才得以一個接一個誕生。最佳的反面例子就是去年洋奇G5,Cole的誰在一壘和法官的抓了個ball可是直接葬送了扳回2-3的希望。事後發現道奇的球探報告早就指出對方依賴天賦而努力不足,只要把球打進場內就能等著看他們的笑話。

我本來沒打算寫太多關於世界大賽的感想的,但是這大概會是近百年最扣人心弦蕩氣迴腸的世界大賽了。論緊湊程度台灣大賽確實比不上,但看了5+7場比賽我只在台灣大賽G2看到胃痛也是事實。我想,這就是在地野球的魅力吧?

不過看著樂天在季中到季後各種亂搞也是挺讓人揪心的。希望會長親自己對面大老闆聊是真的有用吧,唉。

Monday, 3 November 2025

Simon Marais 2025


The tournament was on Oct 11 but I tried not to disclose the problems before I could find them somewhere else on the net. Last year it was quick as someone uploaded part of it to AoPS, but that didn't happen this year. Perhaps it's due to low popularity for the questions posted? I don't know. When I tried to write comments almost 3 weeks later I find it quite difficult when I have forgotten everything.

Welcome to my brief comments 2025 edition. Expect that to be brief, focusing on my thoughts more than the problem/solutions themselves as I tried to wrote everything in like 60 minutes...

A1. A well-received intro question. We don't really need those ordinary computational question, we need questions that truly takes a bit of mathematical essence to solve (but not too much). What is the essence we need for this question?

Growth rate.

Since all functions are positive here (do not matter too much actually), a higher degree polynomial will always outrun lower ones eventually regardless of the coefficients. Since $f = O(x)$, we know that it can only be matched piecewisely by linear functions, but the curve of $x^2$ cannot be reproduced by piecewise linear functions (proof? That's exercise).

A2. Well I am confused here. What do you mean by average? Are you sampling uniformly or what? In that case I think it shouldn't be too hard since matrix like that is all over classic coding theory. I can't give a detailed comment just because I do not bother to delve deeper with the question written so badly.

A3. Wow. At the first glance I thought $A^k$ retains the one row at the bottom -- in that case it should be a straightforward simple induction problem. But fortunately no, this is as hard as an A3 should be. To show that $f,g$ has full distinct real root I tried of Sturm's theorem, but that turns out to be troublesome when you can't even verify if the polynomials are square free. I was so desperate but then I looked at the recurrence relation again: $f_{k+1} = (2+t)f_k - f_{k-1}$

Che...by...shev...?

I remember this guy('s polynomial) only because I wrote about elementary trig limit squeezing one month ago when I tried to expand $\sin nx$, but I am ultra surprised to be able to use that again so soon, just like how I used Galois twice in a row.

More precisely, we can transform the recurrence relation of $f$ into the standard form for Chebyshev polynomial of $T_{n+1} = 2xT_n - T_{n-1}$ with proper initial values. With $T_{k}$ associated with trigonometric function of frequency $\frac{2k+1}{2}$, it is not surprising that it yields full distinct real roots. On the other hand, $g$ can be resolved similarly into another trigonometric expression, then the existence of full distinct real roots plus the ordering is clear immediately.

I wonder if there are other solutions. Chebyshev sounds like too nasty as the only trick forward...

A4. Fourier?!? Everything screams about Fourier approach when it is frequency related. I thought for a while but couldn't come up with a solution in that way, so let's head back to the key element of the problem: finite dimensional space.

Think about the algebraic basis (i.e. allowing infinite linear combination) of $\left\{ 1, x, x^2, ...\right\}$ which we call a Taylor expansion. What if we double the frequency? It sends $x^n \mapsto 2^n x^n$. If a non-polynomial function $g$ admits a Taylor series then the set $\left\{ T^ig \right\}$ *might* have infinite dimension. Of course we would run into the rabbit hole by expanding the *might* argument going through argument involving infinite, so the best approach is to work on the other side instead. That is, to play with finiteness. 

Let $T\in L(V)$ be the frequency doubling operator. We know that $T$ is a bijection. Since $V$ is finite dimensional, $T$ has a matrix representation with respect to a given basis. More importantly we can use Cayley-Hamiltion so that there exists coefficients $c_i$ such that $\sum c_iT^i = 0$. That says for every $g\in V$, $\sum c_iT^ig = \sum c_i g(2^{i-1}x) = 0$. That alone, proves that $g$ has to be a polynomial -- the Taylor series of $g$ solves $c_i$ since $[g]_{V\to V}$ for canonical basis $V$ defines $g$. Using growth rate again one eliminates the tail and confirms the claim.

B1. Surprisingly 'complicated' as a Q1 with how it was worded. For once I thought that it should be possible for all $n$, but more detailed investigation proved otherwise. Focus on the jam when non-coprime numbers are forced to map to the same number. What are the largest possible non-coprime pair given $n$? It should be simple enough from here.

B2. Remember how a triangle is defined by two vectors? Any polygon can be triangulated and decomposed into these vectors. Convexity is important to ensure validity of the triangulation which in this case is given. You don't even need to know much about affine geometry, even simple vector calculus would do.

I wonder why is it not for convex $n$-gon. A quadrilateral is certainly too easy for a Q2. 

B3. Nice problem on linear algebra and complex number. It looks really scary with all the powers, but it's not that bad if you calm down. To me, B1, B2 and B4a (see below) are really manageable, meaning you get 2 hours+ for B3. Even better, there isn't much calculation or bashing -- you realized it's impossible to expand those brackets anyway. Everything is so symmetric and neat, all you need is the right idea.

Since the determinant is zero, there exists a non-zero (real) linear combination $\sum c_k (z_j - \omega ^k)^n = 0$ for each $j$. That is, the polynomial $f(z) = \sum c_k (z - \omega ^k)^n$ has $n$ distinct roots $z_i$. Since $f$ is of degree $n$ we know these are all the roots with $\sum c_i \neq 0$, but we need to ensure that $f$ is non-zero.

Suppose $f = 0$. That means the coefficients of $1,x,...,x^{n-1}$ gives $\sum c_k \omega ^{kr} = 0$ for $r = 0,...,n-1$. Notice that this is equivalent to the linear combination of rows in the Vandermonde matrix that sums to zero. Since the Vandermonde matrix is invertible, that means $(c_i) = 0$, a contradiction. 

Now, by factor theorem we conclude that $f(z) = (\sum c_k)\prod (z-z_k)$. Comparing the constant term at $f(0)$ we get $\sum c_k(-\omega ^k)^n = (\sum c_k) \prod (-z_k)$, hence $\prod z_i = 1$. 

See? Almost zero calculation. Grab the essence of linear algebra and you will reach the conclusion easily.

I am actually quite surprised that the root of unity is only used at the Vandermonde argument as well as the vanishing part at the end. Is it possible to generalize this beautiful result? 

B4a. I would rate this at Q2 difficulty, but this is consistent vs past B4a problems.

First of all, $q = 1$ is the trivial case, yet very easy to miss out. After that we look into higher order solutions.

Assume $q \geq 3$. Notice that $(x+1, x^2+1) = 2$, meaning that they do not share any other prime factors. This is extremely powerful because now you know they must contain high prime powers on their own, which is very difficult.

Suppose $(x+1, x^2+1) = 1$, then $x+1 = a^q, x^2+1 = b^q$ for some $(a,b) = 1$. But then we know $(a^2)^q - b^q = a^q$. The difference between two q-th power cannot be that small. Some simple bounding gives the conclusion of no solution. Similarly for the $(x+1, x^2+1) = 2$ we know that $\nu _2(x^2+1) = 1$ by checking mod 8 so all other factors of 2 were on the $x+1$ side, and we get the same conclusion similarly.

b. Well the structure of on the LHS is completely broken in the generalized case. The structure of (a) completely relies on the factorization, or equivalently the factoring or $n+1$. Are there even results that are general across all $n$?

Interestingly (a) didn't ask about the case $q = 2$, but then you realized they didn't forget about that, instead asking that in (b). Perhaps the committee believes that the case for odd $q$ (or simply, $q = 1$ and $q \geq 3$) is enough for 7 marks in Q4a? 

The case $q = 2$ is where you can actually get solution via Pell's equation which is rather standard. One may argue as above that you do not get solution due to wide gap for large $x$, and below the bound there are two solutions $(x,y) = (1,2), (7,20)$.

C1. Oh a partition problem! Not the NP-complete one you would have expected, this partition is very straightforward.

C2. It sounds like the difficult variant of B4 (by the way, the variant of B4 for rational solution sounds really interesting although I believe the answer is still no solution for $q \geq 3$...), but no. This is a monovariant quartic equation. All you need is to check the determinant so this is not very fun. 

A funnier question would be: which one fits better as a Q1 problem, C1 or C2?

C3. Answer must be no right? I'd imagine a very simple expression should the answer be yes. Kind of a typical scope defining question. It should be doable as long as you extract some invariant among all possible angelic expressions. For example the change in slope? For the monovariant case you can define the change in slope by $\lim _{x \to a^-} f'(x) - \lim _{x\to a^+}f'(x)$. For example, the change in slope of $|x|$ is 2 at $x = 0$ and zero everywhere else. This is unchanged by applying any other operations. You may think about $|x|+x = 2\max (0,x)$ but no, the change in slope is still 2 -- don't forget constants and division are not allowed here!

And, we just need to generalize the above to higher dimensional and work very carefully. Perhaps the oscillating measurement $osc(x) = \lim _{r\to 0} \max _{u,v \in B_r(x)} \| \Delta f(u) - \Delta f(v)\|$? I feel like there are lots of traps here, but it's not extremely difficult. 

Still harder than the insulting 24A3 and 23C3 though.

C4. The old skill checking problem is back. 

If this is a question on a convex analysis course, it would have been a standard tutorial or assignment question with answer within 5-10 lines using convex conjugate and infimal convolusion. For those without exposure to convex analysis result? Well, good luck. I have zero idea how to do that without it.

I have exposures to convex analysis because, out of all, I call myself an analysis specialist. I spent time on convex functions from topics related to harmonic functions. On the other hand, I can hardly imagine anyone else, let alone just undergraduates, to run into such topic. Who the hell's going to study convex analysis out of nowhere?!?

***

Man I feel much better about the problems this year. Less fancy but stupid intro questions, more actual problems that are precise and elegant, demanding depth rather than plain bashing. This is also a year without generating function finally lol.

Yet I still feel like something is off. It is so analysis biased, and I am saying that as an analysis guy. Any algebra and probability (other than the so absurd A2)? Any actual calculus? Graph theory, combinatorics and game? I am always amazed by how Putnam comes up with questions with such short description and solution yet so deep that almost no one solves it. Simon Marais is making good progress towards that.

An additional remark about LLM performances. Gemini and GPT managed to solve most of them but both with obvious gaps occasionally. Grok is so messed up even with the ability to cheat (search online). Below are some quick comments about their performances:

A3. The bad habit of assuming pattern is exposed in A3 where they assume something is true after looking at a few lower cases, they can only answer after you instruct them to solve a single specific step -- to solve the recurrence relation of $f_k$ in this problem. 

A4. This is very hard. They can come up with the linear combination $\sum c_i T^i = 0$ but the rest is a huge hurdle. It is not easy to set up an analytical goal then to solve it.

B3. Well done without much problem, guess this is pretty standard.

B4. Similar to A3, easily purged conditions that are far from clear. Only one of them managed to get multiple solutions for $q = 2$.

C3. Unsurprisingly worst of all. Expression type of problem are usually much deeper than how they are defined, and clearly the LLMs are merely scratching the surface. They exhaust obvious cases, but none of them even got close.

C4. Since this is a skill check, if you know the trick then you can solve without problem. Clearly one or two model know the trick, and the rest do not.

What can we learn from the LLM performances? Well, they can calculate and prove quite well, but they really suck at inventing new tools to deal with existing problems. At least up to now.

And that's another year of the tourney! What do you think about the problems? Please tell me with comments below and we will see again in 2026/when answer's out!