Monday 11 March 2019

拉麵日誌2019: 粋な一生、銀座 篝、Due Italian、鶏そば十番156



在那個再次相遇的晚上後的一星期,東京,銀座。

「你是小泉嗎!才下午三點你已經吃第三碗了吧!」本來漫步在中央通的她好像突然想起了甚麼一般,緊緊地拽著我在六丁目拐了個彎向日比谷方面走去。

「嘛~再晚一點大概就要排隊了,冬天晚上在街上排隊可不好受呢。」今天的她依舊可愛。活潑風的黑色外衣下是條紋上衣配百褶短裙,毛袖下小手傳來的溫度告訴我女生才不會因為穿著配搭而冷病的問題。

她來到一座看來整座都是餐廳的大樓前,再三確認地址後卻皺眉道:「奇怪……銀座6-4-12是這裡沒錯啊。為何只有一樓沒有餐廳……」

她開始在四番地繞圈圈:很像和風料理的酒吧、分店無數的燒肉、外表很土但貼著新潮沾麵海報的麵屋……繞了兩圈還是找不到目標的她腳步倒是變得更急了。「6-4-12、6-4-12、6-4-12……」居然開始碎碎唸起來了呢。

就在她快要冒出星星眼前,剛好一群人從工地旁邊的小巷裡鑽出來。一群西方游客一邊穿上外套一邊討論剛才的拉麵。是外國沒有的「chicken based broth」。

該不會……?

我拿出地圖一看,果然銀座 篝就在這大樓背後的一條小巷裡。地圖上顯示的是兩邊建築物之間的空隙,不仔細放大看的話根本不會發現這小巷。

剛把小巷指出來我就被她拉了進去。穿過在日本難得一見的滴水冷氣機小巷,裡面雖然沒有像桃花源記那樣豁然開朗,但篝與旁邊同樣是頂級拉麵的風見一同傳出的雞湯香氣卻肯定地告訴我們,我們找對地方了。

當然在寒風再排三十分鐘才能進去又是另一回事了。

註:6-4-12是tabelog說的。誰去糾正一下他們應為6-4-15啊……

*

看過拉麵小泉都知道,日本的拉麵不像港式雲吞麵或者牛腩麵那樣湯底以固定配方為尊。地域上環境選材的不同,加上高成本高競爭逼使他們用盡一切方法將拉麵變成有利可圖的生意。對經營者來說最大的問題是,拉麵不但成本偏高,身為平民食物售價也是有上限的。那種在料理東西軍金雕玉砌的拉麵大概只能拿去3000起跳的高級餐廳做,一般的拉麵店根本沒法處理超高級食材跟極為耗時的繁鎖步驟。一般的拉麵大概賣800到比較高級的1200一碗,再高則難以吸引一般的上班族,然後拉麵就變成了一道優化題目。

單論食物本身,配料成本穩定;自家製麵不是人人都能負擔,這樣只能選外面的成品;叉燒再怎樣煮還是叉燒,吃了還是不會爆衣;溏心蛋大家都會做,裡面滲入再多的香氣也好,終究不是大家來吃麵的主因。這樣數一數,可以打造與別不同的拉麵關鍵就只能是湯底了。在這種背景下由湯底牽著拉麵進化是非常自然的事。

既然是湯底,一碗拉麵當然是以湯汁為基底。麵的成分粗幼、掛湯汁的能力、配料一切皆以湯底為中心去考量。這樣的話湯底說是一碗麵的靈魂也不為過。對於店家來說,在有限的成本限制和人力限制下造出備受認可的湯頭可以說是成功經營的第一步--至少實作上的確如此。即將邁入二十週年的拯救貧窮大作戰裡,拉麵店的存活率硬是比其他店家高出一大截。只要保持清潔,加上一個達人掛保證的成功湯底配方,要長久經營根本不是問題。

當然對食客來說,面前端上來的食物才是一切。對他們來說,理解湯底則是理解拉麵的第一步。好吃或是難吃都從湯頭開始。比較可惜的是,對我來說加深對拉麵的理解有個副作用。

那就是在外國對不合格拉麵的厭惡值又上升了。

甚至不一定要外國,日本本土的專為外國人打造的拉麵基本上也是難以入口。啊比如京都的炎◯拉麵實在是……在雜誌上廣告吸引遊客然後給他們吃外國風拉麵讓他們覺得這是日本的拉麵,這樣不會有點丟人嗎?

值得慶幸的是以日本之大,好拉麵實在太多。網上能找到的人氣店好吃的比遠比找到垃圾湯底的機會大多了。以下就來談幾家我最近這訪過印象比較深刻的拉麵吧--在我對兩個月前的味覺記憶還沒消失以前。



Monday 4 March 2019

Log approximation

Something that I noticed when going through Olympiad questions. There is a common type of questions asking about particular properties of a big number. It can be the last few digits, the appearance count of some digits, sum of digits,...or the length of the number. Some(most) of them involves number theory (or nasty computer programming, if you are a fan of projectEuler), but the length of the number is usually calculated using log function.

Since log is such basic element in secondary education, such questions are accessible to most students. In fact, they appear frequently in one of Taiwan's university qualifying exam AST. You are given the value of log 2 and log 3, then you are required to approximate some logged numbers, without calculator of course.

Ironically when you are asked to approximate something that is not a multiple of 2, 3 and 5, the best approach is to go back to natural log...

Wait. The natural number e is irrational right? How can we approximate natural log without using calculator?

Let us define our rule before proceeding.

(1) The approximation log 2 ~= 0.30103 and log 3 ~= 0.44712 can be used. Here log always mean log base 10 and ln is the natural log.

(2) Arithmetic and integral powers may be used.

(3) Calculating the log function is not allowed, unless it is an approximation already made.

*

Consider the simplest non-trivial log-number.

Question: Approximate log 7. (A. 0.8450980...)

Solution 1. Approximate by the average of log 6 and log 8, which are products of 2 and 3s.

That gives 0.84062 with an error of 5% and is only correct to 1dp. Can we do better?

Solution 2. Observe that 7^2 = 49 is also sandwiched by two nice numbers, 48 and 50, so

$\log 7 \approx \frac{1}{4}(2+3\log 2+\log 3) \approx 0.84505$

That gives an error of 0.00005 and is accurate up to 4dp. That should be enough for most question.

*

But some are not satisfied, because there is no error analysis. We get the right answer because we calculate accurate enough, but we have no idea on why this is accurate enough. To do this we need can go back to our good ol' partner: the linear approximation. Derivative says

$\frac{d \log x}{dx} = \frac{1}{x \ln 10}$

so linear approximation says

$\log (x+a) \approx \log x + \frac{a}{x\ln 10}$

If you are using a calculator then it gives 0.84514... (both from 48 and 50), which is of the same accuracy as Solution 2. The problem is...how to calculate ln 10?

The only way to do it is to compare the powers. We know we it is a bit more than 2, so we can prove something like

$\ln 10 > 2.2 \Leftrightarrow e < 10^5 e^{-10}$

Using the approximation $e\approx 2.71828$ we have $1.33 < 10e^{-2} < 1.36$, so $10^5e^{-10} > 1.33^5 > 4 > e$.

Similarly, we can prove $\frac{9}{4} < \ln 10 < \frac{7}{3}$. In fact, $\ln 10 \approx 2.302$, but it would be too hard to compare $e^{2.3}$ and $10$. Going back to our linear approximation. For the sake of killing off the denominator we multiply all terms by 50:

$50 \log 50 - \frac{50}{49 \ln 10} < 100 \log 7 < 50 \log 50 - \frac{1}{ \ln 10}$

Apply $\ln 10 > 2.25$ and $(\ln 10)^{-1} > 0.42857$ here:

$84.9485 - \frac{50}{49 \times 2.25} < 100 \log 7 < 84.9485 - 0.42857$

$0.8449499 < \log 7 < 0.8451993$

with a maximum error of 0.0001247. This is really accurate just by hand.

In a more general set up, one may argue that even calculating Taylor series by hand would be more accurate, but if you sense something nice about the number and its neighbors there is nothing bad on taking a shortcut.

*

Knowing the approximate value of ln 10, we can actually bound the error terms from the two solutions, still without calculator but rather painlessly.

Exercise:  Prove that in solution 2, the error is less than 0.0001. That is, to prove that

$| \log 7 - \frac{1}{4} (\log 48 + \log 50)| < 10^{-4}$.

Hint: when you apply linear approximation to get log 49 from either log 48 or log 50, both estimates are larger than the actual value. From there it suffices to find a quadratic error term that is accurate enough. Oh of course you may want to use calculus here :)

Solution