Wednesday, 20 August 2025

古早遊戲BGM巡遊(11): 夏のspecial

八月已經過一半多一點了。雖然按農曆來看大暑已經過去,但用暑假來看現在才差不多要進入高潮的部分。比如說,永無止境的八月就是17日開始的。不知道還有多少人記得這個梗呢?

如果要問我印象最深刻的「夏」歌,近十年的話我一定會回答君の知らない物語

「あれがデネブ、アルタイルベガ
君は指さす夏の大三角
覚えて空を見る--

やっと見つけた織姫様
だけどどこだろう彦星様
これじゃひとりぼっち--

每次這段都聽得鳥肌直豎要哭出來,不是有這種衝動而是淚不知不覺就滾下來了。夏季大三角和牛郎織女都是洋溢夏日氣息的元素,簡單幾句不但押韻又富含深意:我望向妳指給我看的夜空,看得見織女卻找不到牛郎。這樣織女不會孤獨嗎?那麼、妳又在哪裡呢?

……

咳咳。跑題了。君の知らない物語再好聽也總不會是遊戲BGM吧?

夏日、古早經典、遊戲BGM。

我想不少讀者已經猜出來了,那就是夏祭り。

原曲來自JITTERIN’JINN(1990),當時就斬下不錯的成績(oricon週間三位、全年80)。沒想到十年後的Whiteberry版本更進一步,不但全年排34,更讓她們登上紅白大舞台。對我來說接觸這首歌的契機當然不是當年的J-POP,而是太鼓收錄的版本。從二代開始每代都有收錄,是太鼓存續率最高、最經典的曲目之一。

夏祭り成為太鼓的招牌可說是渾然天成。太鼓本來就帶有熱鬧和祭典屬性,跟夏祭り完美重合。現實中的夏祭會有太鼓表演,那遊戲裡的太鼓也放上這一首也是天作之合。

你還記得那個太鼓的鬼譜嗎?那些沒有變化的ddd和kkk三連音,簡單的節奏不但切題,也是很好的登龍門。對我來說大部分音遊「上級者」門檻的概念都差不多,就是對十六分連打的應付能力。DDR的話是MAX300,太鼓的話鬼6星的夏祭り作為上級者的分界或許過易,作為引導成為上級者的前置卻非常合適。夏祭り的BPM142不算快也不算慢,拿來適應連打剛好。這首的物量也不少,能穩定地把那堆三連連打全部打過的話相信難一點、天國與地獄之流也不會構成任何障礙。我想,這也是為甚麼太鼓玩家普遍對夏祭り記憶如此深刻吧?

其實我一直都不知道太鼓版本的夏祭就是Whiteberry唱的,以為是南夢宮自己找人唱,現在比較熟番音遊公司運作以後才知道這根本不太可能。Whiteberry版的夏祭り的確比原版更青春熱情,在基本的樂團樂器以上還加上了太鼓等祭典元素,放進遊戲裡再適合不過。不過原來後來太鼓也把原版給收了進去,還做了個十星的裡鬼譜。譜面好不好看人,至少原版在遊戲裡聽起來也不錯,不知道是不是因為被後加了太鼓音效的緣故就是。

夏祭り作為「夏」歌經典最難得的是跨界而且持續的影響力。作為流行曲在1990和2000年分別火紅過一次,太鼓是在2001收錄,但太鼓作為遊戲冒起是2005出新機台和2003-2008分別在PS2/PSP/NDS出遊戲以後的事。到了2020年代夏祭り在太鼓那快要氾濫的歌單中或許沒那麼顯眼了,但這不代表歌曲的影響力消失掉--夏祭り作為野球應援曲就從來沒有停止過。

夏祭り和狙いうち都是常見的甲子園應援曲。比如佐賀商版的狙いうち和濟美的夏祭り都不錯。說起來習志野和大阪桐蔭的版本也不錯,可惜這兩家今年都沒進去正賽。不過沒關係,橫濱的也不錯?在高校野球以外在NPB同樣能發現夏祭り的身影,比如養樂多的チャンステーマ1。給球員應援到一半也有機會變奏成夏祭り,比如這個給山田哲人和巴冷天打氣的

所以說,夏祭り在1990、2000、2010甚至2020四個世紀的年輕人心裡都留下了印記。就算在今時今日,網絡世界上的大家也都還記得這一首夏季定番。從天月、96貓等nico歌手唱的版本那超強的播放量就能知一二。我私心也推Gero的版本就是。

夏祭り和君の知らない物語這對比起來其實很有趣。兩首都是夏日夜上的青春物語。一首是熱血外放的祭典、一首是寧靜夜空的思憶。既然兩者並無衝突,串起成一個短篇故事應該也不錯吧?感覺會是非常棒的東京夢華錄題材,不過最近有點忙,這件事就交給GPT好了。

不知道再過十年、二十年,下個世代的人還會不會接觸到君の知らない物語那優美的歌詞。不過夏祭り的話,我想還能在機廳、球場上流傳很久吧。

我倒是希望大家兩首都能記住就是。畢竟歌曲就像牛郎織女那般,你找不找他們都在那裡。可是找不著的話,大概總會有點空虛寂寞。妳說是吧?

Wednesday, 13 August 2025

Trig function higher order estimates: the limit of squeezing

Let us recall the classic result. What is the limit of $\frac{\sin x}{x}$ at $x=0$?

Without using calculus, we usually prove that by squeezing with the following geometric argument.
The area of triangle $CAB$ is $\frac{1}{2}\sin x$.
The area of sector $CAB$ is $\frac{x}{2}$.
The area of triangle $EAB$ is $\frac{1}{2}\tan x$.

Thus we have the inequality $\sin x \leq x \leq \tan x$ in an neighborhood around $x = 0$.
Rearranging gives $1\leq \frac{x}{\sin x} \leq \sec x$, but since $\sec x \to 1$ as $x\to 0$, squeezing gives $\lim _{x\to 0} \frac{x}{\sin x} = 1$.

That is essentially saying that the first order term of $\sin x$ is $1$ (while the constant term is zero).

Now the question is, how can we calculate higher order terms again without calculus?

For example, what is $\lim _{x\to 0} \frac{1-\cos x}{x^2}$?

With the abundance of trig identities, there are quite a number of possible approaches. Let us start with a pure algebraic one.

For the lower bound, note that
$1-\cos x \geq \frac{1}{2}(1-\cos ^2 x) = \frac{1}{2} \sin ^2 x$, so
$\frac{1-\cos x}{x^2} \geq \frac{1}{2} \frac{\sin ^2 x}{x^2} \to \frac{1}{2}$.

For the upper bound, we use that $\cos x \geq \sqrt{1-x^2}$ that
$\frac{1-\cos x}{x^2} \leq \frac{1 - \sqrt{1-x^2}}{x^2} \leq \frac{1}{1+\sqrt{1-x^2}} \to \frac{1}{2}$, so squeezing gives the answer.

But wait! Isn't it such a pity if we are dealing with a limit with actual geometric interpretation? After all, $1-\cos x$ is the length of segment $BD$. In that case, allow me to present my 'geometric' approach:

We start with the $\sin \frac{x}{2} \leq \frac{x}{2} \leq \tan \frac{x}{2}$, squaring gives $\sin ^2 \frac{x}{2} \leq \frac{x^2}{4} \leq \tan ^2 \frac{x}{2}$.

We use the identity $\sin ^2 \frac{x}{2} = \frac{1}{2} (1-\cos x)$ and $\tan ^2 \frac{x}{2} = \frac{1-\cos x}{\sin x}$, then the above becomes
$\frac{1-\cos x}{2} \leq \frac{x^2}{4} \leq \frac{(1-\cos x)^2}{\sin ^2 x}$
$2 \leq \frac{x^2}{1-\cos x} \leq \frac{4(1-\cos x)}{\sin ^2 x} = \frac{4}{1+\cos x}$.
Squeezing gives the same answer.

*

The next step is then to find the third order estimates. Or, when instincts kicks in, you would hope that this is what you need to generalize the whole thing. However, the deeper you look into the problem the bigger trouble you would find.

The use of quadratic related identities would fail instantly because you know it only give factors of (powers of) 2, which is not good if we are at higher orders. They are simply not good enough to prove the estimate of the next order. (But how did we managed to prove the second order estimate of $\cos x$? My rough guess is that the second order estimate of $\cos x$ is equivalent in some sense to the first order estimate of $\sin x$ although I am not so sure.)

For the other approach, you would wish that you can start with the formula $\sin ^n \frac{x}{n} \leq n^{-n}x^n \leq \tan ^n \frac{x}{n}$ and apply the multiple angle formula. I can see that being a possibility, albeit a very slim one.

The multiple angle formula can be written as $\sin x = T_n(\sin \frac{x}{n})$ where $T_n$ is the Chebyshev polynomial of the n-th order. The surprising thing is, equations in form of $T_n(x) + q = 0$ is solvable in radicals (!!!). That says, you can explicitly express $\sin \frac{x}{n}$ in a nested radicals in $\sin x$ solely and the estimation may proceed. Are you surprised that the name of Galois appears consecutively in my math entries by the way?

For $n = 3$, the triple angle formula induced equation $4x^3 - 3x + q = 0$ has the real solution $x = \frac{1}{2}(r + r^{-1})$ where $r = \sqrt[3]{\sqrt{q^2-1}-q}$. For our purpose we know $q = \sin x$ so that it even simplifies to $r = \sqrt[3]{i\cos x - \sin x}$. The root is real since $q \leq 1$, and we can simplify that to a single real expression in terms of $\sin x$ (left as exercise). BUT, how do we actually retrieve the term $x-\sin x$ from there? This is another big problem...

*

That does not mean we are hopeless against such limit though. 

The term $x- \sin x$ is still geometrically natural on the circle chart as the difference between length of arc $CB$ and the length of segment $CD$. Set midpoint of segment and arc $BC$ as $F$ and $G$ respectively. The arc length can then be bounded using the length $CB$ and $FG$ (note that $CB$ alone is not enough for the third order estimate!). Such approach works for third order estimates, but not any further when we can't find corresponding interpretation for higher order estimates on the chart.

Instead of trying hard with the trig circle, we just reside to the use the limit toolbox...as long as we know the limit exists, but that's easy right?

The existence can be done by continuity and MCT as long as it is bounded. First order bound gives $x-\sin x \leq \tan x - \sin x = \sin x (\sec x -1)$. Notice that $\lim _{x\to 0}\frac{\sec x - 1}{x^2} = \frac{1}{2}$ (why?), we conclude that $x-\sin x \leq (\frac{1}{2}+\varepsilon) x^3$ in a neighbourhood of $x = 0$. 

With the existence of limit being shown, we have all the tricks in our sleeves. Here are two neat solutions I like. Set $L = \lim _{x\to 0} \frac{x-\sin x}{x^3}$.

Solution 1. 
By triple angle formula:
$x-\sin x = x - 3\sin \frac{x}{3} + 4\sin ^3 \frac{x}{3}$
$= \frac{1}{9}(\frac{(x/3) - \sin (x/3)}{(x/3)^3}) + \frac{4}{27} \left ( \frac{\sin (x/3)}{x/3} \right )^3$
$\to \frac{1}{9}L + \frac{4}{27}$

which gives us $L = \frac{1}{6}$.

Solution 2. 
Note that $L$ is also the limit of $\frac{2x - \sin 2x}{8x^3}$, a linear combination of limits shows that
$4L - L = 3L = \lim_{x\to 0}\frac{x - (1/2)\sin 2x - x + \sin x}{x^3} = \lim_{x\to 0}\frac{2\sin x - \sin 2x}{2x^3}$.

Now $\frac{2\sin x - \sin 2x}{2x^3} = \frac{\sin x}{x} \cdot \frac{1-\cos x}{x^2} \to \frac{1}{2}$, hence $L = \frac{1}{6}$.

It turns out that squeezing is trying to prove existence and value in one go which makes things strictly harder, the need of monotonic estimates is really hard to deal with as well. In the above approach, we only need $x - \sin x = \Theta (x^3)$, in contrast to the bound of $\frac{1}{6}x^3 + o(x^4)$ for squeezing. It is also note worthy that n-th order estimate always gives a (n+2)-th order bound (i.e. generalization is possible) because if the n-th coefficient matches, we can argue the (n+1)-th order coefficient is zero by odd parity.

We may need to admit that squeezing theorem has its limit(!) after all.

***

Here is a bonus bound as suggested by Grok4 when I tested its capabilities, and it claimed that this is an 'elementary approach'. I asked it to prove $x - \sin x \leq \frac{1}{2}x^3$ and it returns as below:

Note Euler's infinite product $\sin x = x \prod (1 - \frac{x^2}{n^2 \pi ^2})$. Manipulating the formula gives
$\sin x = x \cdot \prod (1 - \frac{x^2}{n^2 \pi ^2}) \geq x(1 - \sum \frac{x^2}{n^2\pi ^2}) = x - \zeta(2) \frac{x^3}{\pi ^2}$,
and the claim follows since $\zeta (2) = \frac{\pi ^2}{6}$.

Beautiful? Yes. Elementary? Ummm...what's the difference between using infinite product and using Taylor series?

That isn't even the funniest part. In reality it failed to retrieve the tight constant $\frac{1}{6}$. Instead it uses the estimation $\sum \frac{1}{n^2} \leq 1 + \sum \frac{1}{n(n+1)} \leq 2$, so $\sin x \geq x - \frac{2}{\pi ^2}\cdot x^3$, where $\frac{2}{\pi ^2}\approx 0.2026$.

I asked is it possible to prove the inequality with the tight constant $\frac{1}{6}$ by elementary means then? It searched and thought seriously for a while, then it said no.

Saturday, 2 August 2025

被青梅竹馬抓來(略) (14):深夜巡邏看似很安全,實際上一點也不危險

Character design: @kuonyuu, Illust: @あん穏 commissioned by forretrio. Skeb
Editing and re-posting are prohibited // 無断転載、無断使用禁止です

波恩這個城市超出了少年的想象。

他認知中的波恩是邊境城市,有完整的冒險產業,有一定的貿易。因為冒險者泛濫所以治安不怎樣,貿易也是在刀鋒上探戈的高風險行當。但他待了幾天後發現波恩非常安全,治安問題被限縮到一個冒險者為主的區域裡面。城區設置了大量派出所,衛兵的主要工作也是維持治安而不是在商家身上榨取金錢。這都是因為波恩作為貿易要點的產值實際上不比冒險的產值低,商人擁有很高的話語權。治安是由商人和統治者共同維持的,換來的是城市的持續成長。波恩通往王都最近的路線不是全年隨意通行是有點麻煩,但這裡已經發展到可以沿邊境發展道路把國內貿易網絡推出去的程度。

這給少年帶來了很大的震撼。不是說王都就是最繁榮的都市嗎?這片王權鞭長莫及、沒甚麼人看上的邊陲之地,活力反而超過了很多地方。不論是衛兵小販還是各種技術人才,只要努力就能為自己掙得容身之地,甚至還有餘力爬上更高的階級。

在王都這些機會都被一群人壟斷了。

比如說衛兵。王都的衛兵當然也不會隨便壓榨平民,但不少衛兵空缺都是留給有關係的人來當的。在治安系統裡平穩渡日就能慢慢升職,反正天子腳下不可能發生甚麼大問題。

又或者少年只花了兩天就找到的書記工作。書記官絕對是個肥差,光是經手大量資訊這點就代表著一定權力。在王都很多這種職缺都是內定的,唯一例外大概是魔法學園出來的高材生。

又或者商會裡書記會計之類的職位也是個肥差。經手的金錢是如此之多,只要有心隨便都能撈到油水。在王都這類職位都留給親信或者信得過的隨從,但在這裡似乎只在意對方是否有能力應付工作。

現在叫玖里的少年還記得自己要保持低調沒有找任何冒險或者魔法相關工作,他找了一份為商會處理內務的書記工作。在魔法學園接觸過一些相關知識的他比起一般人好上太多,但也沒好到被懷疑的程度。商會沒有很大,剛好可以請一個書記在裡面幫忙,這樣也不需要太多交流。少年說自己從小就是貴族身邊的侍從,因為主上家道中落被遣散才流浪到這裡謀生。這也是少女為他安排身份的一部分,反正少年舉止剛好有一點貴族風範,這種身份正好適合。對方完全沒有懷疑就要了他,還說表現好的話會把培養他為商會的一分子。

對少年來說更重要的是這份工作作息定時,只要把手上的活幹完就能下班。前一個月他還能忍住下了班回家自己訓練,後來就忍不住跑去冒險者公會接委托了。他都選可以單獨完成、不易撞見別人的工作,比如清理下水道消滅老鼠之類。公會感謝他還來不及,因為這種工作一直都沒人要接。少年的想法是有東西讓他練手就好,可是他發現下水道沾上那身惡臭連魔法也洗不清,他只好忍痛放棄。

有甚麼比實戰更吸引人呢?不過他白天還要工作,只能參加晚上組隊在城外狩獵魔物之類的定時巡邏。每天下班回來趕緊睡一會,深夜才是工作的時間。比起白天穿著整齊的裝束工作,他在晚上改頭換面才能讓外人認不出來。他沒有選擇法師袍而是更像盜賊的短斗篷加緊身裝連口罩,雖然接委託時還是免不了要申報自己為魔法師。

「我想申請加入深夜巡邏。」這種巡邏主要是應付魔物,可疑的人不在他們的檢查範圍裡面,這些由城市的防衛力量負責。

接待員接過他的卡片:「玖里先生……?現在不接清理下水道的委託了嗎?」願意接髒活的人很少,偏偏日常委託的完成比例是接待員的工作指標之一。她可不希望放過這位願意接活的少年。

「我……想我明白為何大家都不願意接這種工作。」

「真是可惜~下個月上面會檢討這些工作的酬勞。清理下水道因為一直沒人做,酬勞很可能會升上去。到時如果玖里先生能幫上忙的話就好了~」她露出職業的笑容。

「至少現在我想試試別的,畢竟錢比較多嘛。」

「也對啦……」接待員一臉遺憾,但還是拿出相關的紀錄:「深夜巡邏的空缺並不多,有空缺的那幾天我先幫你排個班吧。可是我們沒有玖里先生在下水道委託以外的活動紀錄,未必能達到巡邏隊的要求。你介意我們對你測試一下嗎?」

「可以。不過巡邏隊的要求很高嗎?看報酬感覺上還是簡單的工作啊。」

「啊、玖里先生你誤會了!加入巡邏的要求沒有很高,只要有基本戰鬥力和沒有犯罪記錄的的人都可以參加。清理下水道當然需要一點自保能力,我們完全不懷疑你能勝任巡邏的工作。只是在下水道清理掉的魔物不需要提交證明也沒有紀錄在案,我們沒辦法在官方紀錄中確認你的能力而已。測試真的非常簡單,絕對不會為難你的!」

「呃,好吧。」

接待員從櫃台後方跑出來,一下就揪出正在大堂喝酒的某位男子。男子不甘不願地跟著接待員走過來:「這就是要測試的人?」

「嗯。玖里先生之前一直在接清理下水道的工作,但我們沒有他戰鬥能力的證明。你可以幫忙測試一下嗎。」

男子走到少年前面,上下打量了幾下迅速得出結論:「嗯不錯,我覺得可以了。」

「啊??你又來了!」男子一臉想快點回去喝酒的態度讓接待員十分不滿:「拜託認真幫玖里先生測試一下好嗎!!」

男子自言自語地講了一堆話才撓撓頭答應:「明明一眼就能確認的東西……唉、你跟我來吧。」少年尾隨男子從公會的訓練場地去。雖然男子渾身酒氣,步伐卻絲毫不見凌亂。

偌大的訓練場地在晚上空溜溜的沒幾個人使用。大堂還是熱鬧是因為有晚上才能進行的委託,但晚上才訓練的人幾乎沒有。少數獨自訓練的人看了二人一下便沒有再理會他們。

「看你體格就知道平時訓練有素。這還用測試嗎?好麻煩啊……說起來你職業是?」

「會魔法的斥候。」

「很好啊,很適合參與深夜巡邏。會甚麼魔法?」

「風魔法為主。」

「別的就不用測了,我只想看你的風魔法。」男子從地上撿起一把石子:「我現在把這些石子丟出去,你就站這裡用魔法攻擊那些石子可以嗎?」

「嗯。」少年抬手向著男子所指的方向,淡綠色的光芒在他手上浮現。

「那我來了哦。」男子第一顆石子從下往上用拋的,並沒有拋出很遠。這跟少年在學園練手的移動靶子有點像。一發風刃發過去乾淨俐落地把石子切成兩半。第二顆石子的軌跡也差不多,同樣輕易被風刃切開。

「喔,不錯啊。」男子改為正手投擲的姿勢,石子被丟得又高又遠。不過這對少年來說還是沒甚麼難度,滯空時間足夠讓他算出石子的軌跡。這次的風刃沒有乾淨地切開石頭而是把石頭擊碎了。

「喔喔。」少年沒留意到身後的男子向後踏穩、右手向後拉弓地丟出第四顆石子。石子以驚人的速度向前平飛。在看到石子的當下少年就發現自己眼睛已經沒有時間跟上,但身體還是本能地向前來了一發風刃。風刃比人全力丟的石頭還要快,它居然成功追上石頭並把石頭的一角砍掉。被切開的石頭餘勢不減徑直撞上牆壁,在這空蕩的訓練場出發出兩人能聽到的悶響。

完蛋。會不會太張揚了?這是少年的第一反應。他連忙說道:「啊……啊哈哈,居然被我蒙中了。」他一轉身發現男子以銳利的目光盯著他,那氣場完全不像喝了一整晚的人。這傢伙會不會開始追究我的出身?把我當成臥底嗎?還是--

男子爆發出豪邁的笑聲,仿彿剛剛只是少年的錯覺:「很有一套嘛!難怪你都接清理下水道的委託。那邊的魔物沒有很強就是躲得快逃得快,不過再快遇上你也逃不掉呀。」

「還、還要測試其他東西嗎?」少年只想盡快了結這測試避免曝露太多。

男子擺擺手轉頭就走,頭也不回地離開訓練場:「不用了,其他的等你進隊再看也不遲。你自己跟接待員說吧。」

謎一般的男子就這樣批准了少年加入深夜巡邏。接待員十分善心地把每一個有空缺的晚上都給他排了上去。少年對男子的身份很有興趣,但接待員沒有要鬆口的意思。男子一直都只在大堂的喝酒區出沒,完全不像是有官方身份的人。其實如果少年敢買一點好酒跑過去搭訕的話說不定很簡單就能要到答案,但年齡不夠又過不了心理關口的他始終只敢在遠處看上兩眼。沒多久少年就忘了這個想法,他覺得繼續混下去的話自己早晚會知道答案的。

深夜巡邏是少年第一次接的團體任務,即使在王都他也從來只接可以獨自完成的委託。一方面是因為他在學園裡沒多少可以組隊的朋友,另一方面也源自他對學園提供的冒險訓練的感受--太低能了。

學園安排的地下城幾乎沒有突發事件可言。路線和會遇上的魔物之類的資訊都已經完整地提供了給學生們,魔物的強度對比魔法科學生的能力而言毫無威脅,比起冒險更像是郊遊。這種安排對長期面對高強度操練的魔法科學生來說十分奇怪。沒有讀滿三年的少年不知道高年級魔法科的冒險訓練是否還是如此無聊,但他知道隔壁冒險科的訓練就要難上許多,這樣出來的學生才會受到那些大公會的青睞。

很久以後少年才知道這種安排的原因--不管事前安排有多好、看上去有多簡單,地下城永遠伴隨著風險。萬一是哪位大人的公子掛彩呢?正是發生過意外,學園在這方面變得意外地保守。在大人們默許的情況下魔法科的冒險訓練逐漸變成了現在的樣子。

對當時的少年而言最直接的影響就是他完全不信任學園給他的訓練,他甚至不敢進入王都裡那些稍有難度的地下城。他不畏懼任何面對面的戰鬥,但地下城那危機四伏的感覺讓他十分不舒服,只要稍有豫疑他就情願逃走。這種心態使他一直不想參與組隊,直到他在新的地方才敢放開手腳。不用進地下城,只要像平時地應付魔物就好,應該沒問題的吧?少年如此告訴自己。

從這時開始他才開始願意跟別人組隊冒險。

小隊的主要任務是留意城市外圍的魔物出沒痕跡。能當場揪出魔物幹掉當然很好,但晚上要憑空搜出擊殺一隻魔物是非常困難且低效的行為。只要找到足夠痕跡整理成報告交上去,冒險者公會自然有人來處理。本來這就是工作的主要內容,但在庫里斯不小心兩次遙距鎖定魔物後小隊迅速把這些拋諸腦後進入狩獵模式。不殺魔物本來就是因為晚上不好找,但已經鎖定了的話就另作別論了。加上魔物也能賣錢,誰又會拒絕這天上掉下來的餡餅呢?

作為小隊裡的新人,其他隊員本來沒有甚麼期望。但是玖里的用實際表現打動了隊員們,於是他迅速融入到隊伍裡面。隊員們不住提起了巡邏工作的要點:怎樣分辨出魔物和人的痕跡啦、常見的魔物種類、合作應付魔物的方法等等。這幫戰鬥力未必很強的隊員們每天都給少年灌輸著新的概念,縝密程度遠超學園上的課,就連冒險科也沒法教得如此詳細。少年覺得這些人絕對值得更好的待遇,可惜到最後決定這點的還是任務難度,如此穩定的工作是賺不到甚麼錢的。

「我覺得你們比很多冒險者都要厲害啊。那堆跑地下城的新手連魔物的基本資料都沒記全就往裡面跑了。」某天少年被眾人拉到酒場裡去,這是他的開場白。

「哎呀你這小子可真會說。有你在我們現在每晚喝完酒還有餘錢回去交差呢!來來來多吃點,今天晚上我來付帳。」

所以平時巡邏回來領的工錢都是喝光了嗎,少年心裡吐糟道。但他沒有客氣,這幾天都能獵到魔物回來都是他的功勞。這種接近城市的地方很難有甚麼危險的魔物,這幫隊員們一個包抄就能把它拿下,甚至不用少年出手。魔物換來的報酬平分下來一點都不差,也難怪巡邏隊員對此反應如此大。

酒過三巡後少年脫嘴而出:「你們對魔物習性如此熟悉的話就不考慮換點別的冒險工作嗎?我看那些沒怎樣準備的新人也能在地下城賺錢,由你們也去地下城的話報酬總比巡邏好吧?」

本來熱烈的氣氛忽然凍結了下來,幾個隊員看著自己的啤酒杯默然不語。數秒後最資深的大叔開口:「唉…小哥你還年輕。地下城再簡單,風險也比這種巡邏工作要高。你看那些進地下城的新人,在一年後還留在這行的有多少,五年十年呢?我們都有家室了,戰力也很難再進一步……這種工作已經不錯了呀。」

「不、不好意思,我不該這樣問的。」

「這麼客氣幹嘛。我們才想問你,以你的身手幹嘛要接這種工作?」幾個隊員立刻跟著起哄。

「我……其實白天有正職,想賺點外快只能在晚上找這種時間固定的活。」

隊員們把少年的正職當成了保鑣或者魔法師之類的魔法相關職業,討論話題開始偏移到他們各種大吹大擂上面。他們大概已經忘了白天幹這種工作的人根本就看不起深夜巡邏這點報酬。

這些隊員們安於這份工作,但少年知道他們對冒險的理解絕對能處理比起巡邏更複雜的狀況。他們可以在這裡幹到退休,而對少年來說巡邏只是他的踏腳石,他早晚要回到那個冒險的世界。屆時他腦裡裝著的是學園裡面教的三腳貓功夫還是這些老油條的經驗累積分別可就大了。這麼好的機會就在眼前,少年無論如何都希望從他們身上學到更多。

接下來的三個月裡少年一直跟著他們巡邏。前一個月還能獵到不少魔物,到了後面連魔物的影子都看不見。大概他們已經把定居這一帶的魔物都獵光,剩下的都嚇到躲起來了吧?其他隊員們倒也不太在意獎金因此下降,至少工作變得輕鬆多了。城市的魔物侵害報告也在下降,他們可以自豪地說這是小隊的功勞。他們也不擔心這個崗位會因此被砍掉,因為少年肯定不會一直待在這裡。

對少年來說這是難得的學習機會。這當然不是戰力上的進步,但誰說冒險只有戰鬥呢?少年覺得現在自己索敵和探路能力都上升了一大截,目光所及任何痕跡都難以逃過少年的認知。他操縱氣流作為額外的感知手段在這段時間也有機會一直實踐,這也是他可以一直鎖定獵物的必殺技。這種技能不用多想也知道在冒險中有多實用。

所以……

明明就有完全不危險但也能學到東西的任務,為甚麼學園連這些東西都不願意碰啊??

*

一份厚厚的文件「啪」一聲放到庫里斯面前,標題就是一年級魔法科去地下城實習的計劃。他快速看瞄過文件的內容:首先是目前的教學進度,然後是為了進地下城所需要準備。學生需要兩個月以上的密集訓練,而且是冒險課和魔法課同時進行的訓練。蓋伊負責探險的知識和技巧,本來也屬於冒險課的實戰訓練則丟到庫里斯手上。在進入選定的地下城以前有兩次很像以往地下城「郊遊」的練習機會,第三次才會來真的。

整個計劃都圍繞降低風險而設計。事前的學習和操練是一部分,在地下此裡面的安排也同樣重要。蓋伊的方案是把探險隊伍進一步打散成五人一隊,而且改變過去讓學生自由探險的政策,每次出入都由蓋伊或庫里斯親自伴隨。老師的主要角色只限於評核和救急,剩下都由學生們獨力完成任務。

文件剩下的部分是選定地下城的資料。這是另一個離王都不遠、已被完全探明的地下城。由冒險者公會管理,人氣不高但進入要預先登記。到時可以學園的名義交涉暫時不開放預約,這樣在裡面遇到人為風險的機會便會降低。任務是假設有人在地下城某處受傷被丟下,隊伍前往定點搜索並回收傷者。文件標註了三個樓層對應三種難度,老師可以按學生隊伍的能力來決定任務難度。

庫里斯看了一遍又一遍,蓋伊終於不耐煩問:「覺得怎樣啊?」

「……你們大公會都是這樣寫計劃書的嗎?」

「才不會。『銀雪兔』底層隊伍的競爭是很殘酷的,還要手把手教的人我們才不會看得上眼。有些天才值得我們破格拉一把,但直接把他們丟去高級隊伍還比較快。」

「那我知道了,你一定是翻出了很久以前學園的地下城企劃作參考吧!」

「我怎可能有這種東西,很多都是動腦想出來的好不好。你也給我仔細好好看有沒有要更正的地方。別忘了這種大企劃肯定要得到學園長的首肯,這個難度可不是開玩笑的。」

庫里斯頭頂冒出問號:「有很難嗎?我看他沒對我的課綱更動作出甚麼表示。」

蓋伊嘆氣:「這是因為你的教學逃不出他的掌控啊。要是他某天跟你說你這樣教不行要改回去,你覺得你有拒絕的權利嗎?」

「……」庫里斯這時才想起華萊里安絕對不是對他更改課綱毫無表示。

「若是你帶學生去地下城出了甚麼意外他不但控制不了,追究起來他也逃不掉。他怎可能讓這種風險出現呢?拒絕你是最自然的選擇。只有讓他感到安心而且不可能背鍋的情況下我們的企劃才有一點點通過的可能。」

「嗯……如果我們讓學生簽名自願參與呢?這樣追責也追不到華萊里安頭上。」

「這樣不就表示這趟冒險的確很危險嗎。退一步來說就算學生們都簽了下去,真出事了你能承受大貴族的怒火嗎?」

「的確不能。」

「你現在明白我為何要花了大功夫把細節全都寫上去了吧。現在想來只為了跟你交個手和幫朋友跑個簡單任務就跳進了這個大坑實屬不值,所以我怎也得把你拉進來,這樣我心理會平衡一點。」蓋伊突然露出微笑:「跟學園長的交涉當然由你這個魔法科老師來做,我已經幫你足夠多了。戰鬥訓練也要你自己來,別跟我說你沒時間教,想要拔苗助長總要付出代價吧?」

庫里斯面有難色:「我明白實戰訓練很重要。但是在魔法課裡加插兩個月的戰鬥訓練先不說有沒有這樣的時間,這已經是花時間在跟本來魔法課無關的內容上了。怎麼想都不可能通過啊?」

蓋伊聳肩:「擬定企劃、給他們速成一下加上帶隊,我能做的都已經做了,剩下的都是你才能解決的問題。嘛,你回去一邊批改卷子一邊想想有沒有解決方法吧。」說罷他把企劃書拍到庫里斯的卷子上面。

「……我會的,」庫里斯思考良久後拿起沙漏和答題紙,明明只是多了一份企劃書他卻感到手上這疊紙變得沉重很多:「等著我的好消息吧。」

***

我一直很想討論冒險體系的建構。冒險產業作為城市支柱之一,冒險生態就是城市風格的縮寫,因此討論冒險體系其實就是討論城市本身。

比如說王都和波恩是兩個截然不同的城市。王都權力集中而且會明確跟隨規則運行,而波恩更像是放任的自治。很多人會想當然覺得前者「比較好」--在機遇、富裕程度、宜居程度之類的指標上--事實上兩者間的優劣完全因人而異。像學園的學生只要按部就班畢業肯定就能在王都找到不錯的工作,魔法科的畢業生還可以一隻腳踏進精英圈子裡面。王都提供了這樣的機會,作為代價是不能打破那些規矩,比如權力的上下關係。波恩則更接近實力至上,冒險者公會連當個巡邏都要確認實力,而庫里斯在巡邏隊上展現實力後則迅速得到大家的尊重。雖然他覺得商會請人都很隨意,事實上你工作的表現人家都放在眼內,真的沒法勝任工作的話就會被無情掃出去。

當然,在波恩如魚得水的大部分都是像他這種實力過硬的人。而那些不經培訓就想進地下城的新人如同巡邏隊所說每年都要折損一批,只有少數人能一直幹下去。如果這些人在王都呢?幾乎進入任何地下城都會被攔下來,只能從最簡單的任務做起。他們生命得到了保障,但也失去了一條上升的捷徑。

這篇前半都是他的回憶,是他看見企劃時的感嘆。順帶一提,深夜巡邏真的不是甚麼高難度的工作。靠近城市的魔物的數量和強度都偏低,而且真對居民產生危害的話一定會通報出來根本不需要巡邏隊。之所以還要深夜巡邏其實就是開個職缺養著這幫有經驗但是已經打不動的冒險者,工資夠低而且真有點用所以這個小隊就被留了下來。在玖里加入以前,小隊每個晚上都能收到若干魔物報告但很多都是誤報,每一兩天就能發現魔物的痕跡,但可能每個月才會碰上一兩頭不長眼的魔物。從數字上看不多,但一頭魔物也是一頭魔物,而且深夜是防備最薄弱的時間,花這點小錢還是值得。

回到當下,庫里斯似乎很驚訝蓋伊會拿出這樣的企劃和看得出要通過企劃的要點。這一點都不意外,也就這笨蛋還沒習慣王都的思考模式吧。能在王都的大公會裡混到相當層次再跳到魔法學園裡教書,怎可能半點政治觸覺都沒有呢?從這份相當進取的企劃中可以看出他還是有半顆老夫聊發少年狂的心,他想看看庫里斯有沒有辦法推動這個企劃,或者更進一步讓魔法科的冒險訓練回到正常的狀態。

正所謂春風若有憐花意,可否許我再少年?這一句也送給各位。

最後是插圖時間,這次是あん穏老師的樹下小睡圖。想像一下被學生吵醒的樣子,到底會是溫柔的教師眼神,還是帶起床氣的防衛性眼神呢?

Tuesday, 29 July 2025

28/7/2025: Sixth form maths/Quintic dreams/Frontiermath

The blog is full of my random thoughts. 

The category of random thoughts contributes to the fifth largest categories among tagged entries, after "diary", "notes", "maths" and "works". Most of them were in Chinese though.

And today I come up with something different: three math related random thoughts in a single entry.

This is new in the sense that all "math diary" in the past are more like "math but too casual" that were still focused on a single topic. This is also new because it's 3 math-related entries in a row...

*

I recently bought another sixth form "textbook" from an antique store. Titled "Polynomials and equations" and claimed "part of the chapters applicable for HKALE or equivalent examinations". This is nothing special: polynomials is an essential part in the curriculum with questions commonly on binomial sums and Vieta applications.

I bought the book at the price of half a cup of coffee, made myself a proper cup of coffee and started diving in...

- Introduction...starts with the notation $R[x]$ and $C[x]$.
- Factorization...gcd and lcm, then the Euclidean algorithm, unique factorization and FToA.
- Solving equations...then start talking about the meaning of discriminant in these solutions together with the insolvability of quintic equations.
- Integral solutions...some number theory, then Eisenstein without warning.
- Derivatives...Taylor and approximating continuous functions, IVT, Rolle.
- Root bounding and separation...approximates, Strum and Fourier(surprise!)...

Oh yeah, the "new math" style old math textbook.

The context was a bit different though. The book I bought was published in 1992, and indeed part of the chapters fitted the HKALE pure maths syllabus and exam depth adequately. The pure math exam was hard more because HKALE itself was designed to be an ultimate challenge to filter true elite to enter university.

Should it be a true "new math" style book, it has to be much earlier like in the 1970s or 1980s, it would also be covering topics straight at university level abstractness. I have another true "new math" era "sixth form" textbook with the title "group theory" that followed M.Artin's line all the way up to similarity. Can you imagine average sixth form students doing that?

Nonetheless the bridging between high school and university has always been an intriguing topic for discussion especially regions adopting the sixth form/matriculation system. Students at that level are matured enough to take another step above the cert level but not quite ready for university. What would you teach them, and what would you examine?

It always feel weird to me that geometry has been playing the vital role in most A-level or even high school level syllabuses across the globe. Coordinate geometry on conics, vector geometry, 3D vector calculus, parametric equations, geometry on complex plane -- do we really need them? Are they really useful other than serving the purpose of filtering students who can't handle messiness?

These geometry topics are almost never used in universities. You will use vector but they are not for solving Euclidean geometry problems. You will see them in linear algebra or calculus II with completely different intents. Conics are almost never used except for optics which is extremely niche and still look simpler than questions you will encounter in A-level exams. Complex geometry is beautiful but you will only study complex analysis in undergrad, not complex geometry.

There are so many misc topics you can fill into the roster instead. What about functions and relations? Injective and surjective functions? Equivalence relations? Group theory from matrices? Inequalities, epsilon-N and epsilon-delta?

...

Youtube forwarded me a video on quintic insolvability without Galois on the same day. Frankly this is what motivated me to write something, not the sixth form textbook.

The video was about Arnold's proof, who managed to open the field of topological Galois theory from this result. The concept of "multivalued pullback" is somewhat unexpected yet so beautiful to understand. 

When I first read M.Artin's algebra on branched coverings, it was too abstract for me. I simply jotted down and didn't understand a word of it. It wasn't even in the exam so I never came back to the topic until I took algebraic geometry course much, much later. Even so, it was never my focus.

On the other hand, the idea of travelling from a branch to another continuously is something that is much common. Winding is everywhere in geometry, topology and analysis. The moment they showed the loop (the projections of the infinite branched sheets onto complex plane) it's like a spark in my brain and everything started to come together.

The rest is all about bridging between loop commutators and roots permutation, but they looks so complicated even as presented in those modified sources. Here is the logic I would rather present instead:

- Given any solution formula for a given degree of polynomial equation, it should be invariant upon transversal along any loop based at solution point.
- In particular, it must be invariant to the commutators of loops, the commutators of commutators,... and so on because they are all loops.
- The key result is that suppose the minimal (least number of nested roots) formulae that are invariant to two loops are both $k$ and that the two loops do not commute, then the minimal formulae that can be invariant to the two loops and its commutator requires at least $k+1$ nested roots (!!!).
- Thus, the existence of the formula relies on the requirement that commutator of commutators eventually becomes trivial. 
- Quadratic case: the commutators of $S_2$ is trivial, hence there is just 1 square root.
- Cubic case: the commutator group chain is $S_3, A_3, \left\{ e\right\}$, hence two nested roots.
- Quartic case: the commutator group chain is $S_4, A_4, V, \left\{ e \right\}$ so it works too.
- Quintic case? The commutator group is stuck at $A_5$ because it's damn simple!

In the first half the proof may look completely new and creative, but once you saw the subgroup chains it reduces to "oh it's the damn old $A_5$ again...".

The video avoided saying $A_5$ being simple directly. Instead it said commutator (sub)group generates the whole permutation group which means any finite nested root doesn't work. 

Abel's proof (for him proving the result before Galois) also avoided the use of $A_5$. He used the language of algebraic independence to show that no further field extension is possible after the quadratic extension (equivalently from $S_5$ to $A_5$), just without all modern tools.

Both approaches avoided the use of $A_5$ although they are simply equivalent in the algebraic sense. The commutator group is in fact the minimal normal subgroup such that the quotient is Abelian. Since $A_5$ is simple, the only normal subgroup is the trivial group or itself, but the quotient upon trivial group is not Abelian, so the commutator group got stuck at $A_5$. Abel's approach is merely the elementary way of showing that there is no transitive field extension (by prime characteristic each step) to $S_5$ because $A_5$ is simple.

That makes me wondering what counts as "Galois"? The use of Galois theory, or even the fact that $A_5$ is simple? Even in modern algebraic sense, we could have avoided the use of Galois theory simply by using the language of field extension. It could have been much easier than Abel's proof too. Does that count as non-Galois proof?

I have no idea.

But one thing for sure: I would be extremely impressed if someone proved irresolvability without using any algebraic structure related to $A_5$.

Anyway, it's a good math video almost at 3B1B level, a hidden treasure that is definitely worth a look.

Some other great references:

*

Speaking of Galois theory I've got one more thing to say: the math LLM benchmarks.

Forget about testing against AMC or AIME. Forget about testing against IMO or Putnam problems. We are now straight into the most advanced problems we can scramble out of our garage.

Previously I have been looking into the HLE (humanity's last exam) benchmarks as they aim to gather top questions from all subjects where math plays a big part of it. However, the mix between math and other subjects means that it is very hard to evaluate how good at math LLMs had became. There are also questions that are pure travia or multiple choice questions that aren't foul proof and hardly represent any meaningful results.

That is, until my friend told me the existence of FrontierMath.

I really like the fact that cover a wide range of breadth while keeping everything hard and foul proof. Top tier questions are only answered using frontier research results and are absolutely into the most niche bit of mathematics at the frontier. I really wonder how did the LLMs managed even to answer any single one of them...we can learn much more from what they managed to answer instead of what they can't for now.

Can I give any prediction on their progress of solving these questions? Not really. I still think they will be stopped by these questions for a long time but I might as well give an opposite answer by the end of 2025...

Sunday, 20 July 2025

IMO 2025 and LLM's misleading claim on gold medals

Hello, time for IMO again!

This is one of the IMO hosted that is closest to my base of New Zealand, but I am not a participant for sure and I am not a team staff anyway, so nothing other than the questions themselves. So let's dive into the questions right now, shall we?

As usual, this is not a full attempt with the proper time limit. This is my instinctive brainstorming and observations, together with comments when I check the discussions.

Q1. Do you call that combinatorics? Or algebra? I think it has bits of everything yet so simple that makes it hard to classify.

For $n=3$ that is pretty simple where you come up with the possibility of $k = 0,1,3$. But what about the general $n$? That must be by induction for sure, and it would be nice if we can reduce the $n$.

My instinct is an idea similar to the reciprocity proof: how many lattice points a line would cross given the first crossed point and the rational slope? That is simply the denominator of the slope at simplest form. That says, sunny lines are inefficient in covering the points whose size grows quadratically. However, this approach is so vague and leaves the cover set in a mess. Thus I changed the covering focus to the boundary instead.

To be more precise, we focus on the colinear lattices $(1,b)$. Two cases to consider: if we include the line $x=1$ that passes through all those lattices we can reduce to lower $n$. If not, that is $n$ distinct lines passing through the $n$ lattices. For that case we ask the question: what lines cover the lattices $(b,n+1-b)$? If they are covered by the line $x+y = n+1$ then we reduce to lower $n$, otherwise again they are again covered by $n$ distinct lines.

Now this is a matching between the $(n-1)$ lattices $(1,1),...,(1,n-1)$ and $(2,n-1),...,(n,1)$ so that it covers all lattices not covered by the line connected to $(1,n)$. We focus on the lattices $(2,1),...,(n-1,1)$. If the line connecting $(1,1)$ does not connect $(n,1)$, all such $(n-2)$ lattices are not covered. They can't be covered by any other line connecting $(1,2),...,(1,n-1)$ either because such line won't be able to connect a lattice on $x+y=n$ then. Thus either $n=3$ or we force the line $y=1$. 

From the above we established that we can always reduce $n$ by arguing at least one of the lines would be the edge of the outermost triangle, so we can reduce $n$ until $n=3$ where we already know the answer.

I thought this is a nice argument until I checked AoPS.

oh.

OOOOHHHHHHH.

Point counting around the outermost triangle with inequality $2n \leq 3n-3$ is much better.

Q2. Geometry outside of Q1/4 is hopeless for me as usual. Interestingly if I had 4.5 hours I can actually hardbash this geometry question by co-geom. It gets even more feasible with the fact that I can actually do Q3 timely this year. It is also simple enough in the sense you do not need to use vector calculus or the ratio gimmick stuff.

Q3. Surprisingly easy really. When you see statements in the type of "$f(a)$ satisfies proposition $P(a,b)$ for all $a,b$" you know this is an extremely powerful statement to be exploited by picking the right $b$. It also allows us to approach by thinking about the factorization of $f(a)$.

Believe or not, these two approaches are all you need for this problem.

- For prime $p$ we know that $f(p)\mid p^p$ so $f(p)$ is power of primes. 
- For $f(x)\neq x$ (we know the identity function does not satisfy the functional equation), $f(p) \mid x^p - f(x)^{f(p)}$ but $x^p -f(x)^{p^c} \equiv x-f(x)$ mod $p$ so $p\mid f(x)-x$ which is impossible for large enough $p$. Thus $f(p) = 1$ for all large enough primes.
- Suppose $a$ odd and $p\mid f(a)$ for odd prime $p$. Let $q$ be large enough so that $f(q) = 1$ and is primitive mod $p$. Then $f(a) \mid q^a-1$, but since $q$ is primitive we know $p-1\mid a$ which is impossible since $p-1$ is even and $a$ is odd. Checking $f(a) \mid a^a - f(a)^{f(a)}$ shows that $f(a)$ is odd as well. Thus $f(a) = 1$.
- Suppose $p\mid f(a)$ for prime $p$, then $p\mid f(a)\mid p^a-1$ forces $p=2$, so $f$ maps to powers of 2. (Notice the order, we need the previous claim so that $f(p) = 1$ for all odd primes.
- It is all prime power ($v_2(a)$) chasing and construction of a tight example at the end.

Every step is so natural: divisibility leads to prime behavior, odd behavior then extend to the whole function. The only slightly less natural tool here would be the Dirichlet's theorem but I guess this is well known right? 

Anyway, one of the very few accessible Q3 to me.

Q4. Strangely I find this one causing me more trouble than Q3, due to the troublesome case by case argument. The first part is easy -- the only three distinct unit fractions the sums to 1 is $(2,3,6)$. The rest is all about arguing (1) what would reduce to this case and (2) why the rest do not.

It reminds me of the Aliquot sequence problem! To fully characterize the Aliquot sequence we just need to argue about (1) what would reduce to cycles (primes, amicible numbers or sociable numbers) and (2) what would runaway. Easy right? No. This is an open problem.

It is easy enough to argue $a_1$ must be even or else the prime unit fractions do not sum up to 1 and that keeps going creating infinite descent, but the rest is quite messy and troublesome, like showing that 3 must be a factor with power limits. Bleh.

Q5. Game with inequalities! It immediately becomes one of my favourites in recent years, although that does not tell anything in terms of difficulty. The "critical point" was deemed non-trivial on the AoPS post but I don't really think so.

Alice is maintaining the linear sum $\sum x_i \leq \lambda n$ while Bazza is maintaining the quadratic sum $\sum x_i^2 \leq n$. The way Alice defeats Bazza is by min-maxing: she can keep choosing zero and accumulate (the allowance of $\lambda n - \sum x_i$) until she can pull a big one to break the quadratic sum. The critical point is then $\sqrt{2}/2$ because the best Bazza can do is $\sqrt{2}$ so that the quadratic sum increases by the maximum amount aka 2.

After that it suffices to check the cases $\lambda$ above, below or equal to $\sqrt{2}/2$. And again I would say every step here logical and natural. The choice of $x_{2k} = \sqrt{2-x_{2k-1}^2}$ looks artificial but it's merely "the choice to stuff the quadratic sum". The beautiful ending to the problem is that the equal case is actually the combination of the winning strategies from both cases.

I love setup like this, but again is it too straightforward for a question 5?

Q6. Sometimes I am tired with "general case" combinatorics question. It is always nice to have a question where numbers are concrete and the answer is strongly relying on that number. Last year we had an "algo" problem using the number 2024 but such parameter can be so easily adjusted to any natural numbers. This 2025 is however different because it is a square number! This is probably the once in a lifetime chance for us to have a square number year when the next one is 91 years away. I am glad that they utilized the chance to put up a question like this.

And honestly I have zero idea on the question. The actual tiling is simple and beautiful. Considering how Q4 and 5 are easy I have again 3+ hours for Q6. In that case there will be a slim chance for me to come up with that optimal tiling, although I doubt if it helps in any way other than ending up with 1/7 or so. Erdos-Szekeres sounds way too advanced for IMO but almost every solution seem to use a version of that. It's a beautiful Q6, although I hope to see a real and slightly more elementary solution.

In overall IMO 2025 is special in many ways:
- An actual solvable Q3 and a Q4 that looks messier than Q3.
- Solvable questions can be done quickly allowing time to solve Q2,6
- 2 number theory problems in similar field (divisibility, power chasing)
- Ending with a "square" problem (kind of reminding me the 1988 Q6 which is also a "square" problem although 1988 isn't a square xD)

I really enjoy the problems this year, can't say anything further. I seemed to keep complaining Simon Marais problems but never did the same to IMO or Putnam. Perhaps this is the magic of collaborative efforts, hm?

Oh well, we will see again in 2026.

Update: I read news about OpenAI and google claimed that their ai made good progress with "gold medal" at 35 points. But is it that big of a progress though?

I am not sure if we can solve those question using commercial LLMs, but I would not doubt their ability to compare the score against historical performances:
Q3 is indeed much, much easier than historical mean. Comparing against 2005-2024 data, this is +2.3 in Z score and the highest in 20+ years. This is not only by students getting partial marks (for example, I imagine that knowing $f(p) = 1$ for large enough primes is easy and will get you 1/7 for sure), but also by astonishingly high 7/7 rate at 15%. 

Q5 is also fairly easy as expected with a Z-score of +1 in 2005-2024 data although it seemed to trend easier since 2018 or so:
In overall, Q1-Q5 are all easier than average. Q6 is harder than usual (0.143, Z-score of -0.85), and is among the hardest Q6 historically in terms of average score. But this is fine because Q6 is here to serve as the ultimate challenge anyway. 

The takeaway is, this set of problems is an outlier vs past difficulty, and has a significant gap between mid-hard problems and extremely hard problems. The gap of difficulty is precisely the right difficulty of questions where LLM progressed enough to be able to solve. The lack of such question renders OpenAI and google's "claim in progress" hollow.

Oh by the way the 1988 Q6 average score is 0.6 -- not exactly hard in this regard. Not the legendary level hard at least ;)

Thursday, 17 July 2025

16/7/2025: 世冠盃/數學番/AA/A

久違了的閒聊。

嘛,首要的大事當然是世冠盃決賽我車在地球保衛戰中清脆俐落地把大巴黎斬下馬呢。

說起來,我已經不記得上一次一年內熬夜兩次看球是哪年了。今年的兩次也就是兩個決賽,其餘晚場我根本懶得看,又或者看個半場也就剛好對上美股收市,不能算真正熬到天亮那種熬夜。

幸運的是這兩次熬夜都得到對應的回報,還是說這回報過於甜蜜了?全世界都知道我車鋒無力,但大概都沒有誰料到有個正常前鋒後戰鬥力居然直接提升了兩檔。其實浪費機會的可不只有Jackson,還有Nkunku可是上季全歐浪費最多xG的人呢。這兩個中游球隊來的前鋒,一看就知道全身功夫都為禁區肉縛和最後一擊而練,我車缺的就是這種人,讚啦。

至於大家吵得臉紅耳赤的「含金量」問題,我是覺得沒甚麼好吵的。名譽上肯定要叫自己世界冠軍啊。以前的世俱盃贏了都叫自己世界冠軍了,現在這個怎麼不可以?你說歐冠有足夠的歐洲球隊世冠盃沒有?那巴西球隊贏了歐洲的三四場是怎麼回事?世冠盃也有32支球隊,勁旅的數量也夠了啊。不服的話你下屆自己進來試試看?

真正有爭議的競技強度。6、7月歐洲剛好放暑假,南美卻是季中打得火熱的季節。有辦法能證明歐洲球隊輸球是因為競技狀態不足嗎?錢到位球員教練球隊拼命是肯定的,但實際效果可能略有出入。當然歐洲季中也不能保證狀態,不過預期上總比季後再拉來打好不是嗎。這方面我不敢亂說,應該要用上數據科學才能下判斷。

最後一點,說說這比賽的未來。球隊最高達一億美元的分成任誰都會心動,這也是賽事被如此看重的原因之一。漂亮的營收加上川皇加持,這屆比賽算是空前的成功,也吸引了大量國家競投下一輪主辦權。對此我還是懷疑這比賽真的有這麼吸金嗎?如果不是美國的巨型球場、人口基數和消費能力,營收能達到這個高度嗎?我是不太看好,不過如果以後一直放美國舉行的話能有這種成續我也不意外,放其他地方就別想了。

*

身為數學家,看到這季新番可是想當興奮,原因正是本季足有兩套「數學」番。

如果只看列表應該會有點疑惑,第二套「數學」番是哪部啊?

Silent Witch沉默魔女。


雖然單憑人家叫了一聲數學博士就把這歸成數學番有點奇怪,不過至少把女主稱為數學腦絕對不為過,那個思考方式真的是做數學的才會有。配上其超級內向的性格,我們可稱之為--數學小孤獨。

沒錯,這番就是講一個數學小孤獨扮豬吃老虎走向人生巔峰的故事。

扮豬吃虎、魔法世界這種題材每季都有,但這部作畫細膩、劇情合理張弛有度、顏藝到位、聲優陣容豪華,在不涉及劇情下已經很難再給予進一步的讚美。看了兩集目前個人評分為7.2/10,算非常高分了(雖然我已好幾年沒在這邊放上完整評分表),絕對值得大家去試看。

另一部數學番是費馬的料理,聽名字就就知道是數學x美食的番。

……等等,這不就是我嗎?

進去看不到十分鐘,看到男主用座標硬爆幾何題被白毛嗆怎不用軌跡和不變量解題,說他也就這樣云云。

……欸等等,這真不是我嗎?

本來看到專業等級的數學對談還以為有人真敢把這些搬進動畫裡給廣大觀眾看,沒想到兩集看下來是這樣--

我、北田岳、上輩子讀數學庸庸碌碌只能當牛馬,最終累到被卡車送走。

重生到高中時期的我只想把舊路再走一次。以為可以靠前世的積累拿下競賽席次,怎料看見天才們的境界後才知道自己真的不是那塊料子,甚至在考試中直接崩掉。

本來被寄予厚望的我被記恨的學園長處處針對,獎學金被要求退還,還被逼去食堂打工。就在此時--

「叮!至尊美食系統激活中……」

只要嘗過一次的美味就能記住,甚至還能反推菜式的秘密?每日簽到就能拿到菜譜,消費點數就能拿到討好客人的提示?

本來想著低調發育的我本來還想對外還想說是用數學倒推,沒想到食堂打工第一天就被年紀輕輕就拿星的天才廚師識破?

一場未曾設想的剌激美食之旅就此展開--

……

聽上去很像上架後二百話以內完結的網文,但這的確是我看了兩集的感覺。在同一集內看見專業真實的幾何吐糟和用類似函數關係的草圖就能倒推出料理關鍵步驟這兩種截然不同的數學內容,絕對能引起觀眾帶來尷尬而不失禮貌的微笑。

其實本季的好番和題材真不少,有機會我再來寫吧^.^

*

既然要寫日記,那就補兩句DDR好了。

最近不是出了AA的csp譜嗎?我記得我做過AA的太鼓譜,覺得這DDR譜很像我過去會做的太鼓圖。一翻下去發現我做的不是AA而是AAA,風格完全不像我所想像的東西。我那AAA譜面一點都不流暢,虧那還是我代表作Holy Moon半年後才做的圖,那都是甚麼鬼啊……

Thursday, 3 July 2025

網絡隨心巡記(2): 三崎港→函館

當我新開這個系列的時候,我完全沒有料到這個系列會有第二集。當時我只是把這當成一種讓有借口寫我這種形式的隨筆而已。以下這個隨心遊記同樣隨心隨機,一切所記之事皆屬偶然。

*

1) 三崎港

跟朋友吃飯,電視正播放日本料理巡遊的節目。這一集介紹的是三崎港。這我可熟了,京急的老熟人,還有那用電池漲起的平板點餐的迴轉壽司連鎖店,我怎可能不熟呢?

這次介紹的是某位山田老兄的餐廳。只見他端出他的招牌菜,烤巨型吞拿魚頭。他先給吞拿魚祈福,然後用純熟的手法用純熟的手法把魚頭解體成腦天、魚眼、面頰等部位。每個部位各有不同的口感吃法,讓人看了就流口水。

……沒錯了。

我衝口而出:「我認識這家餐廳和這位老兄。」

2) 愛の貧乏脱出大作戦

如果我是在其他料理節目中看過這家餐廳就算了,偏偏這餐廳出自愛の貧乏脱出大作戦,中文叫拯救貧窮大作戰。

說到料理節目這一塊日本似乎比西方走得更前。當他們在玩鐵人料理和拯救貧窮大作戰的時候拍Master Chef和Kitchen Nightmares的戈登還是個毛頭小子呢。

某一年台灣買了版權回來播,既便距離拍攝當年已經有15年左右,這劇集居然在台灣掀起了不小的熱度。看看中文版維基的詳盡程度就知道了,一般的番組可沒有這種狂粉喔?既然提到了這檔節目,我當然也是粉絲之一。節目裡的貧窮店沒記得多少,達人店倒是很有印象。至少那時候對所謂達人店有多好吃是很有憧憬的。

現在的大多數人自是不會認識這檔節目的,我只好跟朋友聊三崎港坐京急去很方便云云,但我心裡卻一直想著趁我還記得回家搜一下:距離上次檢查又過了好幾年,到底有哪些店還活著呢?

3) Tabelog

二十年前沒有這東西,現在總有了吧?到底達人店有多好吃,一查不就知道了。

原來一些達人的店也不能算最頂級,不過當然這有點過於嚴苛。要找一家肯花幾天幾夜(按照傳聞的話可不只幾天)全心教你的店主也不容易啊。

順帶一提,山田桑的店的分數是3.6,算不錯了。

4) 南醬

拯救貧窮大作戰的超級爭議人物之一。

其實能夠經營不善到被節目挑上,店主多半都有點毛病。比如說不講衛生、味覺跟一般人不同、對無關的事異常執著等等。南醬特別就特別在所有毛病都有一點,偏偏又沒很過份,加上他那不溫不火的性格和辦事調子,除了可以直接DQ他的達人以外大部分人都拿他沒辦法。

偏偏他通過補修,可以賣學來的四五六拉麵了。

偏偏貧乏店的存活率這麼低,這家店卻活下來了。頂著被霸凌的壓力,南醬的拉麵或許不是最好吃的,但他確實找到能讓自己這店活下去的方法。這家在函館開的拉麵小店最後靠俄羅斯遊客活了快二十年,還不是被經營狀況壓倒的,這個傳奇算是有個圓滿的結局吧。

*

其實我想到南醬並不單純因為他是這節目的指標性人物,也是因為在愛の貧乏的非官方資料庫最頂看到一條訃聞。才看到第一個み字我想到南醬,而youtube的搜尋建議上「愛の貧乏脱出大作戦 みなみちゃん 死去」這條也的確排很前。考慮到南醬幾年前身體就很差了,現在出事好像也不是很意外。

事實當然不是這樣。嘛,現在南醬的確實狀況也沒人知道,但資料庫上說的卻是另一個同樣重要的番組成員--

2025/03/01 みのもんたさん逝去。ご冥福をお祈りいたします。

Monday, 23 June 2025

22/6/2025: Cell games

I was checking my old phone earlier today for any remaining files before hard resetting it as family backup phone.

I checked all the pictures and downloads, whatsapp backups, as well as all the abandoned apps. I then  came across to a particular app: the tentacle wars. That is the ported version of the old kongregate game that I spent so much time on. I played the custom levels on toilet, before bed or simply all the time back in the days. That's the screenshot I took today:


That means 3349 total (auto generated) random levels solved. Taking levels deemed too easy to spend time on into consideration the actual number is easily above 5000, and that's only on this particular phone. On previous phones the counts are all 5 digits. 

The total score is the sum of scores across all non-random levels, and the score is essentially a measure of remaining time -- or equivalently the time you used. The higher the score, the lower overall time you used to clear all stages in the game.

That reminds me of the various speedrun categories where players care about time spent on independent stages separately. It might sound less exciting than non-stop categories but they also provide all sorts of fun plus extra technicalities since you can study every detail to the finest bit. Examples include punch-out, Mario Kart 64 and Smash Melee break the targets -- when you know these are all games mentioned by Summoning Salt you know these categories must be spicy!

Fortunate for me, a framerule (cue the bus analogy here) system applies here where the clock/score ticks only every second, so optimization is much easier. I once thought 110k+ was impossible but then proceeded to reach that, and I am quite confident that this is very very close to perfect now.

I found myself so addicted to such simple game. Or rather, I found myself so addicted to a whole genre of games. Referred to "cell games" on Kongregate, it's a branch of RTS that is almost extinct since the discontinuation of flash.

Simply speaking it's a type of RTS around cells which are preset immovable architecture, and the goal is to conquer all cells on the map. Assault is usually done by connecting two cells where units are sent from one to conquer the other or boosting self's architecture. Health of the cell is usually the only measurement -- it represents both health (it flips when HP reaches zero) and strength (how many units you can send/how powerful your attacks are) at the same time.

Most cell games separate from each other by permutation of the above rules, but that leads to completely different strategy. Just to give a few examples:

Tentacle wars
Architecture: Power = HP, upgrade/downgrade automatically with HP
Attacking means: by extending straight line tentacles (that costs HP) that attacks, power depends on attacker level, no collision
Strategy: fully connected network, overloading (tentacles output much more if it has grown to size limit and consecutively receives from other tentacles)

Cloud wars
Architecture: Power = HP, no upgrade, homogeneous structures (with variations from 2nd game)
Attacking means: send half of its own HP towards others on straight line, with collision
Strategy: Aggressive, concentrated attack, make use of collision to defend

Little stars for Little Wars
Architecture: Power = HP, predetermined production power for each star
Attacking means: consume ALL of its own HP to attack on designated straight line (graph structure), with collision (only when path cross over each other which is rare)
Strategy: create chain of power transportation, create line of defense/min-cut analysis

Solarmax:
Architecture: Power = HP, predetermined production power for each star
Attacking means: consume part (adjustable) of its HP to attack, do not collide
Strategy: swift, concentrated attack, high precision high frequency control, game theory

Auralux
Architecture: Power = HP, spend fixed amount of HP to upgrade (for higher HP and production) for some stars, reverts to lowest level 1 if conquered
Attacking means: consume part (adjustable) of its HP to attack, do collide
Strategy: swift, concentrated attack, rely on chaotic randomness on multiplayer field\

I really how such simple rules lead to different optimization approaches. They are complex, but not complicated enough so that near full optimization is possible. It also matches my interest on investigating the "ultimate meta" of a game. 

Sadly the tentacle wars app is no longer compatible on my new phones and with the upcoming hard reset it would be gone forever on my phone. But for whoever interested in the game you can still find that in Kong (using ruffle). Alternatively, Little Stars for Little Wars and Auralux (2) are both on app store that you can give it a try.

Tuesday, 10 June 2025

Thoughts on CTWC2025

Hello and welcome to my CTWC thoughts 2025 edition.

I finally watched it live again. That's probably due to my huge interest on TGM4 listening to its OST and watching every pushing attempt, but that's topic for another day. Youtube on the other side, sensed my taste and started pushing everything about CTWC to me, from player interviews to day 1-2 qualis and of course, the finals on Sunday.

There were about 2k livestream watchers early in the finals. That number is surely much lower than the numbers we saw during 20-22 twitch live streaming, but that isn't a bad number either. It is hard to say whether it is better or worse comparing to 2024, this is something we can say much much later.

This year however, I would not cover anything further about change in popularity. I felt bad about missing technical contents in 2024. Sure I missed the tournament in live and surely wouldn't spend more than a few hours to re-watch the whole thing, but it is bad in the sense that the missing technical content created a hole, something hard to recover when I come back trying to figure out what was classic Tetris in 2024. Think about it -- I mentioned "lv29" ZERO times in my 2024 thoughts. How was that even possible?!?

I believe my argument on the tournament and my vision over the "endgame" is pretty well laid in the past years, so there is no need to emphasize that every year. Is the lv39 super kill screen killing all the fun? I might say yes in 2024 but this year I started to appreciate that -- we will talk more about that later.

As a compensation I want to simply focus on the players' performance and the shift in the meta. Let's start, shall we?

Gameplay before lv29

The community is getting so good that lv19 speed does not pose too much additional threat comparing to lv18 speed, so we may as well talk about both of them in one go.

Although I didn't say anything about gameplay last year, the progression from 2023 or since rolling is clear: optimize up to lv28 as much as possible. Given their ability to roll, it is possible to take near maximum risk and survive consistently. 

This was a goal, but this is precisely what top players are doing in 2025.

The best example is Tristop with how he maintains crazy (80%+) tetris rate in the majority of games. He even entered second transition once at 1.3M+ score and another time at near 1.3M, both would be tournament record breaking. It is unfortunate that we don't see him progressing further, because his ability of taking huge lead would be such a big threat aginst those who survives up to high 30s to hope opponents to top out.

Second transition and so on

I think this is what truly separates very good players (say, the top 32) and champion contenders. Assume that everyone survives up to lv28 what would you do?

They would have taken the risk if they can afford to, but the speed is simply too much for most players. What you see in the tournament is basically what they think is the best balance between risk and reward for players' self. If their strategy is not aggressive enough they can only hope that opponent would unfortunately top out -- if your opponent out-maneuvered you from lv29, chances are there he holds the lead before lv29 as well.

And for those title contenders, what's fascinating is that each of them take enough risk so that they probably top out before lv39 aka the second kill screen. If you think carefully, reaching lv39 is actually a waste because that means there is space for extra aggressiveness for potential extra tetrises that are worth more than potential score you can get up to lv39. Very few games actually ends with double second kill screen. I shall appreciate that as medal of players seriously taking this game and format to a very competitive level.

In short, a player's potent under such format is decided by their effectiveness in the last 10 levels. If you read the games in that way, you won't be surprised that Alex T won the tournament unbeaten at all. He is the only guy who can not only comfortably survive, but also consistently turning mess into tetris ready shapes. Again I have to mention Tristop here, he is the only one who can outperform Alex before lv29 and then try to survive Alex T's counterattack. (What about Meme? I think he is very well-rounded, unfortunately weaker than Alex on every edge, putting him in a very bad position in case of 1v1 matchup...)

Qualification and seeding

Remember how seeding works? It is all about getting maximum number of maxouts within a time limit. For some time I do not treat an accurate way to assign seeding, possibly due to impression from distant past where all you need is to get a few maxouts and chill.

Not anymore now.

Getting a few maxouts merely gets you into the gold bracket...before getting kicked out by top rankers even if you survived the top 48 stage. You need to press really hard to score 12 maxouts which all top 16 did. The aggressiveness is precisely what is needed in the knockout stage. 

I wasn't sure about the correlation between aggressiveness before and after lv29. Like...is it possible for a player to be very skillful that mastered lv19 speed but simply can't react after lv29? The tournament proves that these two are properly correlated i.e. it also properly seeds the player in the knockout stage.

At a point I wasn't sure about whether kicker makes sense. Is it better just to instakill a game to get a super small kicker (so that it isn't zero) than to lose intentionally at high pre-maxout score? Well I was certainly overthinking there. Most top players ended with a high kicker, not intentionally but the aggressiveness level naturally leave them a kicker like that. What about players with zero/low kicker? Well, that means they get an extra maxout instead of every single possible high kicker, which is, at the end of the day, more important.

The same qualification format has been used for a very long time, but I am glad to verify that it is actually a good one.

***

Before closing down my thoughts I just want to raise one last observation: lv29 gameplay is extremely stamina and concentration consuming. 

This is quite easily overlooked when you thought players could play casually up to a few million points (in the unlimited format), even up to the glitched levels or even close to reborn. Not only that such high level gameplay only applies to a few players, it is also about tension and pressure from the tournament. Scuti is one example where he slipped and misplaced bad piece on column 2 forcing him into rescue mode. If that happens on a player who reaches reborn, the same could have happened to anyone else.

When it comes to extreme e-sport, I always feel stamina being a very important factor. RTS games, MUGs, and of course competitive tetris. Perhaps a secret of Alex T's domination is his training from other sports...?

That's all! Another year, another fun weekend to enjoy. I will see you again in 2026.

Friday, 30 May 2025

Log approximation 2: analytical approach

This is a sequel to my previous entry on approximating log values without calculators.

Why would I revive such a primitive topic? These questions certainly won't appear at high level Olpmpiads anyway. Well, when I came across to questions like this I always like to flex a bit. On top of that, the last entry was in 2019: six years later let us revisit the question from a higher perspective.

So yeah, let us forget about calculators and have fun with numbers. Also, log always refer to log base 10.

Problem 1. Find the first 2 digits of $A = 41^{25}$.

Recall the few well known log constants: $\log 2 \approx 0.30103$, $\log 3 \approx 0.47712$, and $\log 7 \approx 0.84510$. The last one might be less familiar but shouldn't be too hard to approximate up to good precision (which I demonstrated in my previous entry).

From here you know $\log 40 = 1+2\log 2 \approx 1.60206$ and $\log 42 = \log 2 + \log 3 + \log 7 \approx 1.62325$, so $\log 41 \approx 1.612655$. Now $\log A = 25 \log 41 \approx 40.316375$, which we only care about the decimals. 

How do we compute $10^{0.316375}$? Well we don't even need to. Note that $\log 20 < 1.316375 < \log 21$ which shows that the first two digits are 20.

Now, what if the question asks the first 3 digits of $41^{2025}$? You may try but the above trick fails simply due to lack of precision. 5 decimal places aren't enough when you are going to multiply with 2025 and ask for 3 digits precision (recall the asymptotics of log).

In order to have a glimpse on the precision we need, let us consider the original problem again but with a twist -- we want to do it rigorously.

Problem 2. Find the first 2 digits of $A = 41^{25}$, provided that $\log 2 \approx 0.30103$, $\log 3 \approx 0.47712$, $\log 7 \approx 0.84510$, $\ln 10 \approx 2.30259$ are accurate up to 5 decimal places.

We can express the upper and lower limit of our approximations as follows:
$\log 2 \in (0.301025, 301035)$
$\log 3 \in (0.477115, 0.477125)$
$\log 7 \in (0.845095, 0.845105)$
$\log 40 = 1+2\log 2 \in (1.60205, 1.60207)$
$\log 42 = \log 2 + \log 3 + \log 7 \in (1.623235, 1.623265)$

What about the possible range of $\log 41$?
Surely we have $\log 41 > \frac{1}{2}(\log 40 + \log 42) \geq 1.612642$ by convexity but the upper bound is less obvious and we need the power of calculus again. Note that 
$\ln x^2 = \ln (x^2-1) + \ln (1 + \frac{1}{x^2-1}) \leq \ln (x^2 - 1) + \frac{1}{x^2-1}$.
Here the constant $\ln 10$ kicks in:
$\log 41 \leq \frac{1}{2}(\log 40 + \log 42 + \frac{1}{1680\ln 10}) \leq 1.612798$.
Gathering the bounds we have 
$\log 41 \in (1.612642, 1.612798)$. 
Notice how the gap suddenly widens with a single log interpolation.

From here we multiply and get
$\log A \in (40.31605, 40.31995)$.
Since $\log 21 = \log 3 + \log 7 > 1.32223$, we know that $A$ must start with 20.

Our approximation almost failed! I made a mistake and forgot to halve the difference $\frac{1}{1680 \ln 10}$. With that mistake the upper bound of $\log A$ would exceed 40.323 failing the argument. The fact that the actual value of $A$ starts with 2087... only makes it worse. 

*

Not enough?

Then how about doing the calculation from scratch, without the assumption of the log constants?

Problem 3. Estimate $\ln 2$ up to 5 decimal places. (0.693147...)

There are so little we can do without advanced calculations:
- One may think about Newton's method but forgetting we can't calculate exponents. 
- One may also think about the series of $\log (1+x)$, but the expansion at $x=1$ converges too damn slow (we need like a million terms...). 
- We can also try $x = \sqrt{2}-1$ for $\ln \sqrt{2}$ hoping for quicker convergence. It indeed converges quickly but $\sqrt{2}$ is simply another nasty number to approximate. We could group the positive and negative terms and find the sum separately but then we run into hyperbolic inverse trigonometric functions (!!).
- Back to basic we have the integration $\ln 2 = \int ^2_1 x^{-1}dx$, but the problem what kind of partition do we need for such precision? Say, the upper bound is by tripizodal estimation and the lower bound by rectangular estimation. Assume a uniform partition of $N$ parts. Then the error is given by 
$E = \sum \frac{1}{2}(\frac{1}{x_i}-\frac{1}{x_i+N^{-1}}) \cdot \frac{1}{N} \geq \frac{1}{2(N+1)}$.
And to have a $N$ large enough for $E< 10^{-5}$ is just...ridiculous for manual computation.

Is all hope lost? Not yet. We need a series that projects $(0,1)\mapsto (1,\infty)$ so that we can enjoy geometric convergence. What's better than the series $\ln \frac{1+x}{1-x} = 2 \sum _{k=0}^{\infty}\frac{x^{2k+1}}{2k+1}$? The value of $\ln 2$ corresponds to $x = \frac{1}{3}$ and a quick convergence is guaranteed. 

We compute the first five terms:
$\ln 2 \approx 2\cdot (\frac{1}{3} + \frac{1}{81} + \frac{1}{1215} + \frac{1}{15309} + \frac{1}{177147}) = \frac{4297606}{6200145} \geq 0.693146$.
The above is taken as a lower bound. As for the upper bound, we loosely say that sum of the tail is less than, say 1.5 times the first remainder term, i.e. $3 \cdot (3^{11} \cdot 11)^{-1} \leq 2 \times 10^{-6}$, meaning that $\ln 2 \leq 0.693148$. Therefore the approximation $0.69315$ is accurate up to 5 decimal places.

What about $\ln 7$ then? We can easily estimate that using $\ln 7 = \ln 8 + \ln \frac{7}{8}$ with the help of the series of $\ln (1-x)$, but the brilliance of AI kicks in: we can also flip that into $-\ln \frac{8}{7}$ and apply the series of $\ln \frac{1+x}{1-x}$ again. We would end up with a smaller ratio, hence quicker convergence. 

I am not going to do all the calculations, and I am not going to ask you to try as well -- knowing how is far more important than being able to, especially when you know you actually have more tools around than simple calculators.

Lessons for today is ummm...I guess...there was a reason behind why people needed slide rule or log tables? 

No but seriously, the same question can be asked for many common functions and have very practical applications (except that we loosen the scope from hand computable to quick algorithm for computers). 

According to Wikipedia, the last series approximation for log is indeed accepted as an accurate and quickly converging approach in approximating log values. Of course there are other perhaps better approach like the use of AG-mean, but that is out of the scope of manual calculation. The only other possible mean by hand that never came to my mind is the use of Padé approximant, as laid out in this MSE question, which looks pretty accurate too.

Monday, 19 May 2025

19/5/2025: 千年之別

中學時被教過仲夏夜是五月夜,但我只知道北半球的五月熱得讓我失眠。

「又失眠了……」我嘀咕著,一邊把冷氣打開。思緒卻沒切回到睡覺模式,只是停留在剛剛夢到某本十幾年前追過的同人作品。

那是極其稀有的、以祖世代為引子的非現世穿越同人。

大家都知道子世代本傳的漏洞太多太多,到今天我看這本祖世代同人才又發現一個。這個漏洞很容易被忽略,連我看MWPP這本親世代巨著都沒發現,不過一但發現了又令人難以忘懷:劫盜地圖的材質。

先不說這四人有沒有可能在四年級前後就探清學校「所有」結構並開始製作如此高深的魔法物件,這東西這麼好用最少也得人手一件吧?為甚麼沒有這樣做?又或者,這麼高深的魔法真的是普通物件能承載的嗎?如果羊皮紙本身是特殊的,那麼他們能做出這地圖也比較合理了。這本祖世代同人覺得這張羊皮紙說不定可以直接追溯到祖世代時期,聽上去也不是不可能。

哈利世界觀的問題是祖世代和現代中間的缺失太多了,而且中間「甚麼事都沒發生」這點就跟中學歷史老師跟你說中世紀的歐洲人混沌地混了一千年一樣荒誕。中間就沒有人有好奇心探索學校祕密嗎?就沒人成績比MWPP優秀?沒有人哪怕接近四巨頭的遺產?他們的初代學生呢?基本上本傳所有秘密要不出自祖世代,要不出自親世代,當我們就這不合理溯本追源時卻被告知中間的一千年都是混沌、不可知的,這實在難以使我這種讀者信服。還有那比四巨頭更早的時代呢?亞瑟王是個魔法師嗎?那個卑鄙的海爾波是希臘人吧,那魔法史怎不能再往前推幾百年?還是說,這些都像現實中同時期的威爾斯史一樣已經佚散到找不回來的程度了嗎--

正因為如此,我才會對那些專攻舊世代的同人如此感興趣。不是為尋找「正確」的答案,而是為看別人的推敲過程,就像小市民一樣。

我還有很多問題想問。比如帷幕、比如索命咒的本質(cf那隻為課堂而犧牲的蜘蛛)……我越是用力思考,在被窩裡就更覺燥熱。即使打開了冷氣也沒用,被子裡累積的熱量可沒那麼容易散去。

……好可惜啊。

現實網絡已找不到那篇原文,再下一次夢到這文不知道是何年何月了……

Monday, 12 May 2025

12/5/2025: Ubertreffen in Osu! and DDR

Ubertreffen, or Übertreffen, A 'classic' classic from Taka. 

Along with many of his remixes, this is yet another piece sourced from the classics. Much less obvious comparing to, say V from Winter: it's Bach for sure as indicated on the composer name, but which pieces exactly? Don't be surprised if you haven't heard of it: it's prelude of Suite in C minor BWV997.

It has been one of my favourites. Not just only because it's from Taka or it's a classic remix, but also because I made a top quality guest diff for the song. I wrote in my reflection on my 10 years of Osu! that this is one of my greatest pieces, which I still think is. I took references from both the piano and drum transcription without much personal input, but it worked very well.

The reason why I mentioned the song is more than pure nostalgia though.

Remember Konami started making new challenge diffs for old DDR songs? Yeah Ubertreffen was one of them. First only to paid players, then to all players upon extra savior unlocking. 

I don't like the idea of song subscription from the beginning (just like the one from nos) so I didn't pay for the pack, and neither of my friends or whoever appearing in the same arcade did, so I had to wait. The time finally came I gave it a go immediately.


Score-wise it turned out perfectly: 860k is a top lv18 score for me and that's on first try. Won't be surprised if I grind and ended up with 900k. 

But map-wise...I am not feeling comfortable at all: tension mismatch, density inconsistency, random beats...it is as if a part time staff mapped that. A good map is supposed to be readable, where song itself provides a reasonable hint to upcoming notes. These are all basic when it comes to mapping and yet were absent in the mapper's mind.

Let's not get into the delicacy of arrow choices because it is an art in its own and works quite differently from games like 4K. Without that DDR is essentially a one dimensional sequence of beats added on top of the song. Yet that sequence sounds bad enough for the song. (From now we reference the chart and timestamps from here.)

I was not surprised on first try by the streamy part at the beginning but by the 1/1 break at bar 17:4 when the connection as be much smoother by connecting like bar 16:4 like an echo. The stream from bar 33 reflects the harpsichord section which actually started a bar earlier, so why not initiate the stream earlier instead of stuffing meaningless triplets? It is fine not to initiate long stream from bar 44, the triplet at 45:3 is also fine with the raising tension -- but bar 46-48 does not reflect that at all. Even worse, the break right before the stream breaks whatever tension left. Finally the loose beats that look almost like breaks at bar 53, 55 then 57-62, all accompanied with proper piano like a steamroller all the way to the end, and these 1/2 notes are a complete waste, especially the sliders bar 61-62.

The problem is clear: the chart is divided into separate sentences. Some properly relate to the structure (which they should), but it's the inconsistency that matters for a chart you want to conquer. The more familiar you are with the song the more uncomfortable you gets. This is just the common phenomenon of mapper patting on their head for their "idea" that turns out to be hardly understandable by players at spot. 

It is not the first time konmai making weird charts. Of course they do all the time from the time since the time of paranoia eternal, dead end and so on. It's their desire to fill the lv18 folder that leads to much worse situation in the past half year or so with the mindset of either "let's bump this lv16 worth challenge to a lv18 one by placing weird shit" or "oh shit I made it too hard let's give it an easy end". 

*sigh*

From the perspective of a clear-based player like me I shouldn't care because I am supposed to clear no matter how shitty it is -- weird pattern, odd breaks, off beats -- but it's just sad to see a chart that sounds so off.

Enough with my complaints. I have to say Ubertreffen does not represent all the recent charts added to the game. I enjoy a few of them at least...like 音楽 (STARDOM Remix). The chart is doing precisely what the song delivers with no bad taste surprises. SMASH is another map with extreme density imbalance but it works perfectly with the song.

Oh well. Time for me to go back and grind again...

Wednesday, 23 April 2025

被青梅竹馬抓來(略) (13):古代的缺陷是現代的基石

Character design: @kuonyuu, Illust: @80 commissioned by forretrio. Skeb
Editing and re-posting are prohibited // 無断転載、無断使用禁止です


測驗當天。

庫里斯早就在教室裡等待學生們。講台上只有一個厚厚的封袋,一疊答題紙還有一個沙漏。沙漏是少數大家都能用的簡單魔導具,上方的沙流光時沙漏就會發光。

「因為我怕我把握不好測驗該有的形式,這份卷子是由二年級魔法科的蘇菲老師代出的。」他在學生面前打開上面的封蠟拆開,在裡面拿出已經準備好的試題。他輕輕抬手,這疊試題就慢慢浮了起來,又自動一張張分散開。每一張準確地飄到學生的桌面,反面朝上。這個當然也是他的把戲,要同時操控這麼多分散的物件其實不容易,他趁著學生還沒到的時候就拿答題紙練習過幾次:「所以連我事前也不知道具體考題,不過相信你們肯定沒問題的吧?」

「按規矩我要說一下。這個測驗的成績不會影響年末考試的分數,但是學生表現會用作接下來教學的參考。」測驗成績當然會用作評價庫里斯的指標,這點大家都知道但不能說出來。他把答題紙以同樣手法分發出去,一邊補上官方說明:「當然作弊被抓的話還是會被送去處分的。」

「大家都有試題和答題紙了吧?那麼,一小時現在開始。祝大家好運。」庫里斯把一個大沙漏翻轉開始倒計時,學生們立刻翻開桌面上的題目開始作答。他也第一時間拿起試題看看蘇菲給他擬了甚麼題目。

*

蘇菲的辦公室跟庫里斯這種菜鳥完全不同,各種書籍整齊堆放在書架上一塵不染。辦公室設置了保持溫度濕度的魔法陣,比起讓人覺得舒適更重要的是讓書本保持在最適合保存的狀態下。如果仔細看就能發現這些書很多都是基礎的課本或參考書而非尖端的學術書籍,足以證明其對教學的熱誠。此時她的桌上擺放著一份精品墨水鋼筆和一份曲奇,那是庫里斯的見面禮。

「這裡加起來,我至少要教一個月。」蘇菲托著圓眼鏡道:「你還真敢這樣教啊。」

蘇菲是布拉德以外另一位魔法科老師,在庫里斯入學時就已經聽過她的名字。不過魔法科老師都是一口氣教同一批學生三年,上一批學生畢業以後會回到一年級教。因此他早就知道教他的是布拉德而非蘇菲,也就沒過份留意後者。在他入讀期間聽過不少關於蘇菲的風格:投入教學、熱愛幫助學生。很多不是她班上的人去找她,她都樂意教。但是庫里斯當時所在的班級沒人敢跑去找她,因為他的老師叫布拉德。

她深得學生的喜愛,只是在大部分學生眼中進到布拉德的班裡更重要。單是布拉德的學生這名銜就比魔法科學生更響亮了,這代表著實力和人脈,遠比那些理論知識值錢。實際上布拉德帶出來宮庭魔法師數量一直都比蘇菲教出來的多。要不是高階貴族還要臉都在後代剛足十六歲就送去學院,說不定會有更多人寧可遲一年入學也想等來布拉德。為甚麼蘇菲沒有在布拉德離去後代替他成為這重要班級的教師呢?對外的說法是她不希望拋下她已經教了一年的班級,至於有沒有其他人為操作就不得而知了。

「我把一些屬性的古典觀設成了指定預習。如果是他們的話肯定可以循我上課的方向自己消化這些指定內容的。」

「他們才不可能自己讀得來。我問你,你當年聽布拉德教這些的時候是怎樣想的?」

「覺得他都在講自己的火魔法,他的指定預習比我還過份。」這是實話。

「唉。」蘇菲扶額十分苦惱:「那你現在是怎樣看的。」

「這是進入正題前的前菜,讓學生適應環境用的……吧?畢竟我們的學生還用古典那套可就要廢了。」

「不行不行,你這樣太浪費了。」蘇菲拿出身為教師的樣子,庫里斯樂得在她面前當個學生:「我來出一份測驗吧,看能不能改變一下你的想法。」

本來只是想來討教一下怎樣擬題的,沒想到一下子變成蘇菲主動要求出題:「如果你想法有改變的話,就不要把看似沒用的東西通通讓他們自習。很多內容都是連成一體的,缺了一部分就失去意義了。」

「以他們的能力不說舉一反三,在提點下他們融會貫通是可以的吧。」

「才不會,尤其是那些進來以前沒接觸過這些課題的學生。入學試能保證的只有魔法潛力,其他能力下限是有但只有下限的話根本跟不上課程啊。每次教一年級我都要幫學生補底,那還是在我教得比較慢的情況下。」

「這……我從他們的作業的表現來看還好啊。」

「那都是錯覺,一到測驗他們就露出原形了。你應該很清楚吧?如果連這些簡單課題都沒法在有限時間內處理掉的話根本不能跟上後面的課。」

庫里斯沒法反駁,只好轉移話題:「你真的要幫忙出題嗎?不會佔用你的寶貴時間吧。」

「放心,都是重用試題不會太花時間,不過批改你要自己來。」她在書架上抽出一疊紙張,看上去就像是試題。

「測驗的難度會跟平常的一樣嗎?我想他們想看到比較難的題目。」

「嗯,沒問題。這是因為大家都覺得這批學生特別厲害吧。」

「這也是沒辦法的嘛,他們怎麼可能放心把自己的寶貝王子公主交給一個新人來教呢?」

「不只有家長喔,我知道很多魔法界人士都關注你的表現。正是這樣你才要把這些細節都處理好。雖然教的內容因教師而異,但課綱是前人一直改進留下來的,每個課題都有其價值。不要因為看上去不重要就讓學生回去自己讀啊。」

「那麼蘇菲老師,你覺得古典元素觀裡應該補充的細節是…?」

「到時候你拿著測驗卷想一想?」不會直接給出答案而是引導學生思考的才是好老師。

*

卷子上一共四題問題。第一題是定義題,問的都是適性的定義和常見檢測方法,一些常見魔法的辨認等,都是只要有讀過就能背出來的基本題目。

第二題給了三個小法術,要求學生在古典觀的框架下對其進行分類。這時古典觀的問題就出來了:三個小法術裡兩個有明確屬性、一個則可能在兩個屬性之間。試題上給的是法術的名字和效果,但沒有給出發動的方法。如果有好好上課就能記得庫里斯講過本質和結果的分別,所以嚴格來說這三個法術都不能單從結果來分類的。視乎學生看待試題的角度兩個答案都可以接受,前提是要有合理的論證。

第三題是關於風屬性的技術問題:到底魔法驅使的是空氣還是流動本身呢?這是正常教授風屬性入門時就會處理的問題,但把這些觀點寫上去不會拿到任何分數。重點是古典框架裡面是怎樣理解的。庫里斯在課堂上花過不少時間解釋這東西,畢竟本質對於體系來說十分重要。然而他在風屬性上把這些教過一遍以後對於其他屬性的類似比較就沒有這麼上心了,不是被他草草帶過就丟到指定預習裡去。如果這題問的是其他屬性的話大部分學生應該也能作答但表現可能會打折。他甚至懷疑蘇菲選風屬性是對他的遷就。

第四題是關於傳說中有關時間的魔法。雖然現在大家對這方面的理解完全為零,但相當數量的古代文獻都有類似記載。這題目從三段相關古代記載開始,然後也引用了近代魔法師的有關研究。這些研究最終沒有實質的進展,大都以整理分析古代紀錄為主。在現在的技術沒法理解和重現的前提下,只能以古人的思路去推敲這魔法的原理了。其中一個觀點是「時間魔法在古典觀裡被歸到水屬性裡面」。這題問的就是要學生就引用的文獻討論這個看法。

這問題有多難?這是一個傳說中的魔法,連是否存在都不知道,學生只能用想像加上文獻去理解「時間魔法」。跟前面的題目一樣,重要的是題中描述的時間魔法而非任意編出來的時間魔法,如果想偏了的話作答也會失去意義。

然後就是水屬性這個問題。第二題的分類裡面好歹三個法術都是實際存在,而且很明顯是「元素」類別的魔法。雖然課堂上教的是不能單從結果判斷本質,但實際上一團火的魔法絕大機會就是火屬性的魔法沒錯。帶有元素特性的魔法的分類在古典觀裡還是很直接的。但是時間魔法是甚麼元素啊?!?

古典觀是把所有魔法分類到這些屬性的框架。為此它的分類並沒有明顯的排他性,也就是說某屬性的魔法必然符合某條件之類的要求。要論證時間魔法是否為水屬性,首先要論證它屬於水屬性,然後還要論證它不屬於其他屬性。前面勉強能做到,後面則涉及各種屬性雜七雜八的分類方式。逐個屬性論證的話太花時間,所以這題其實更進一步要求學生整合出其他屬性的共通點然後與文獻描述的特徵對比。這絕對是惡夢級別的題目,在年末考試中排到最後一兩題也不意外。在六小時的考試裡面也許還有時間逐個屬性檢驗,在一小時的測驗裡則絕無可能。

他立刻想到蘇菲老師所提到不應該跳過的內容。不同屬性之間是有共同點沒錯,但共同點下的小差異非常精巧,由學生自己來不一定能好好處理--應該說連庫里斯自己也不太行。水和空氣作為流體,兩者思路看上去就差不多,庫里斯把風屬性講完以後就把水屬性一大部分丟給他們自己來。他們在作業上的表現還可,但這第四題一看就知道不像是學生自習完就能應付的題目。

他估算了一下。一般的好學生會在時間之內答完前三題,但第四題大概沒多少人能寫出甚麼來。當年的庫里斯的話答完前面兩題能在第三題拿一些分數就不錯了。即使是現在,庫里斯也不敢說自己能拿到滿分。

這份卷子從淺入深也覆蓋了大部分課題,不過這些只是擬題的基本。讓人驚艷的透過這份試卷學生得以從擬題者的角度理解古典觀。第二題後半點出了古典分類的模糊性,第三題是與現代理解的對比,最後一題則引用了正常不會接觸到的案例讓學生深度思考古典的處理邏輯。

如果由他自己來出題前三題大概差不多,這都是課堂上教過的。重點是第四題,他根本沒有足夠的知識量引用文獻寫出這種題目。他心中的第四題很可能是古典框架裡對強大法術的構築,正好對應他講過現代人用古典觀上限不行的講法。另一個選擇是從考古題裡抄出來。這當然可能抄到類似蘇菲老師這題,但是這樣最後一題會和前面割裂開來,用測驗引導學生思考的效果就會打折。

為甚麼要教古典元素觀呢?這是庫里斯從前就在想的問題。古典觀後來被發現了不少漏洞,所以後人才把這個原始的體系稱為古典加以區別。用古典方法學一些基本法術的確很快可以上手,但這肯定不是這些學生的目標。那為甚麼要把這些東西放在一年級、而且是在總論的地方就教呢?為甚麼不可以把這些東西丟到以後的歷史選修課,讓那些有志考古的人自己讀個飽算了呢?

這試卷簡單幾條問題就帶出了古典框架的不足。反過來看,後人的改進都集中在這些不足之上,是現代框架的基石。難道庫里斯教的時候就不會提古典觀的不足,作業都不會碰到這種問題嗎?當然不會。但庫里斯的想法是「我知道這個體系不太行,但簡單容易上手,我們都來學一下好了」。就算知道體系的不足連結到後面會教的課題又回何?雖然學生們都是挑出來的精英,但總不能一上來就把他們往死裡教吧?但蘇菲就是有能力把整個大局展示給學生們,這是她作為教師的能力。可以說這份測驗是前面這些導論最完美的總結。

分析完手上的試題,庫里斯望向那些在奮力答題的學生。平時講課的時候根本不可能仔細留意學生們,這是庫里斯第一次有這樣的機會。前面兩題大概難不倒學生們,到了第三題後大家的表現才各有不同。

包括公主殿下有幾個學生還在不停寫著,完全沒有被第四題難倒。這幾位幾乎都是叫得出名字的王室貴族。只要能力靠後一點的比如伊雅娜,只寫了一段東西便再無進展。丹特是個沒被第四題難倒的例外,大概是他的歷史知識起作用了。艾基爾連第三題都看不明白,他的反應全寫在臉上。要以冒險者的現實思維理解這些東西可不容易,這是他要在魔法科活下去的第一個難關。克萊伊倒還好,他在工學上的興趣說不定對回答這些問題有幫助。那些平民背景的學生表現倒也不是完全不行而是有好有壞,在庫里斯眼中已是相當不錯了。

學園的方針是優先挑選有潛力的學生,因為學園認為他們有能力培育。現實是學生進來以後的受到的教育和外面並沒有大分別,無非就是教學強度高上好幾倍而已。空有潛力而根底不足的學生如果能跟上就會成為庫里斯那樣,但一開始就被卡住的話很快就會被其他學生拋在後面。他們能否在這裡活下去,全看他們有沒有得到足夠的幫助,而這助力很大一部分都來自教師本身。就學生們的表現來看,庫里斯這方面還有待加強。

……

沙漏上方的沙已經跌穿最後一個代表三分鐘的刻度。庫里斯在最後時刻沒有盯著學生而是一直盯著沙漏,想知道沙漏是否會在最後一粒沙流下去之時才會發光。

最後的結論是……看不到。沙漏發出的強烈光芒幾乎把他給閃瞎掉。

「時間夠囉。卷子可以留下,把答題紙傳上來,記得寫上名字。」

「我想先做個調查:覺得這個測驗困難的請舉手。」一半學生舉了手。三分一學生舉手覺得是正常難度,沒有人舉手說太簡單。當然有人三個選項也沒有選,但看到沒人舉手也不好意思舉手吧。

「蘇菲老師告訴我這幾題在她的題庫裡算是中上難度,除了第四題以外都算正常會遇到的題目。這應該跟你們的反應差不多吧?如果覺得整份都難的話可能要記住這裡是魔法學園的魔法科,標準就是這麼高。放在期末考試的話,至少要答對前兩題、第三條要拿到大半分數才能及格。以這個標準來看我覺得你們都做得不錯。」

「在我們進入新課題之前我會花一點時間總結這個課題,發還卷子後我會補充一下這些題目相關的內容。在這之後我們才會進到下一個課題。」

「為了鼓勵大家,我決定給大家一點動力。每個學期裡面成績最好和進步最多的學生都可以拿到可以讓我的單次使用卷。嘛,當然是在不違反任何法律和規定的情況下。」

「另外還有一個消息,那就是今年冒險訓練也在火熱籌備中。有別於往年的安排,我們希望在安全的前提下盡可能讓大家感受真正挑戰地下城的挑戰性和樂趣。負責的是我知蓋伊老師。聽說冒險科那邊的一年生已經開始進地下城實戰了,如有興趣可以往那邊打聽一下。不過我們魔法科沒有完整的隊伍,所以安排會略有不同。」學生們的反應比剛才講使用卷還要熱切。雖然使用卷聽上去十分誘人,但是名額只有兩個而且其中一個大概已經被內定了,而冒險訓練是大家都能參與的東西。就印象而言,庫里斯除了是風魔法的專家以外肯定就是地下城的專家,說學生沒期待過是不可能的。

*

「呦,不錯嘛。」蓋伊大手重重地拍在庫里斯背上,幾乎嚇得後者鬆開手上的沙漏和答題卷,連附近的學生也被嚇到:「科尼回去後對你讚賞有加,還說應該把你拉進公會裡面。」

「科尼一定是喝多了吧。這不過是27層的一次標準出勤而已,作為公會的前教官你應該很清楚這種任務的難度。只要給科尼隨便配一個有戰力的隊員,這種任務都不會太難。」

「你這樣說可就不對了。不到深處難度的確有限,但是你要考慮到27層的特殊地形對一般冒險者來說有點麻煩,超大量聚在一起的魔物也難以對付。這就是為甚麼這種素材一直都沒人打回來,因為太多更容易打怪賺錢的地方了呀。這東西混身上下沒半點肉,除了魔核以外根本不值錢。就算市場沒供應價格也抬不起來。」

「我以為錢出夠就會有冒險者會試試看,真的不行的話真接僱用冒險者不可能拒絕的吧。科尼明明說公會出了錢請冒險者來幫忙,他們不至於完全找不到人啊。」當然,除非他們很想花掉這人情讓庫里斯小試牛刀。

「這……大概是科尼作為大公會裡的中堅分子看人的眼光有點高吧。普通能應付27層的冒險者根本進不了他的眼,而且要帶梅莉下去的話的確是有點麻煩。」

「你……也知道梅莉下去了?」

「肯定的啊。明明其他人把素材收回來讓她處理就好,她明明沒戰鬥能力卻一直想要下去,大概想研究地下城裡面的甚麼吧。不過公會看她能賺錢就讓科尼帶著她,然後就變成這個樣子了。不過你不用替他們兩個擔心啦,梅莉真的幫公會賺不少錢,看在這個份上科尼和她能拿到的資源只會多不會少,不夠的話鬧一下就會有了。」

「我看梅莉處理魔物的手法十分熟練,但只會這點東西的話應該賺不了錢啊?嗯……她說她擔任研究員,有甚麼研究很好賺的嗎?」

科尼搭在庫里斯背上的大手強力地把後者拐向自己的辦公室:「喔喔這個啊,在王都裡她可是有名的鑑定專家呢,素材的種類和品質有時候只有她能分辨出來。比如素材的耐用度和承受魔力的能力,光用看的根本沒有分別,但是把劣質素材摻在其他昂貴素材摻在一起做了件廢品出來不就要虧死了?在『銀雪兔』這種地方能經手的素材數量和種類都夠多,也能給予冒險者支援,她則為公會承包鑑定業務,對大家都有好處。如果你有需要鑑定的話找我或者科尼,我們給你打個折也可以喔。」

說著說著二人已經走到蓋伊的辦公室前,蓋伊終於把他的手放下。庫里斯立刻道:「蓋伊老師我想先把試卷放下--」

「沒關係的,反正不會有學生亂闖我的辦公室。」蓋伊一邊開門一邊回應:「而且我想跟你談一下有關冒險訓練的事,你一定有興趣的吧?」

***

要瞎掰這些東西可真不容易。

我看哈利本傳和同人的時候總覺得他們一開始會描寫某學科在教甚麼,但後面的篇幅都不會再提這些東西。本傳自不用說,只有第一集描述了開頭幾堂課的內容。同人尤其轉生成老師那些很多都是一上來改變教育方針驚為天人,出試卷秀了學生滿臉。然後呢?老師亂入魔法石試練,老師亂入密室……在老師的優質教育下大家都學得很好不用再花氣力描寫。

到最後,到底他們七年到底確實學了三小還是個疑問。魔藥課真的一上來就做魔藥嗎?完全不教其他東西?如果一學年四十星期,他們豈不就做了至少三十幾種魔藥啊?這學生怎可能記得住啊?……等等之類的東西。但是要為虛構的學科創造一個具體的教學框架那可真的困難,寫成網文的話除了我大概也沒人要看。

所以我捏造了這個古典觀後還會一直捏下去嗎?我還沒決定好,但是古典觀這東西已經是最接近現實科學的框架了,再往下真的不知道可以怎樣寫。

說到「古典觀」而且有明顯漏洞那種,最有名的例子當然是原子模型。我一開始就是以它作參考比較「古典」和「現代」的,連試卷往物理奧林匹克那個方向去想。可是我又想想這不對啊,在那種幻想世界裡真的有成熟的方法論嗎?有成熟的數學加上非魔法物理體系嗎?到最後我還是回歸「討論」這種十分文科和英式的問法。

所謂討論,就是仔細拆解論述句子中每一個詞,先分析其含義再加以回答。現實中好的討論題是沒有固定答案的,或者說答案全看學生如何論述。所以「是屬於水屬性」只是可能性之一,其他諸如是水屬性也是其他屬性、不是水屬性但是其他屬性、不是水屬性也不是其他屬性皆有可能。當然,這裡的試卷引用了學術觀點裡主流認為是水屬性,即題目本身就有取向,這樣題目的難度至少降到正常人知道在問甚麼的程度。說話回來,庫里斯懂得怎樣批改那種正宗的討論題嗎?

關於測驗的用法,其實庫里斯想著強調古典觀在強力魔法的侷限並沒有錯。這個觀點也是將古典觀和現代連結的一個方法,在實用角度看來甚至非常自然。不過在測驗上放上這些已經在課堂上反覆強調過的觀點就太沒趣了吧?這樣處理前三題還可,最後一題的話果然要把學生踢進陌生的環境裡才能真正看的出他們懂多少呢。

最後是插圖時間。有時我已經開始搞不清哪張已經出過哪張沒有了,不過這樣應該還沒有出過吧?來自80老師的作品,是可愛少年風的庫里斯!如果倒退幾年的話大概會在學院大受歡迎的吧?……才怪,沒有地位的人在學院裡混可不容易。把這樣挑出來的原因大概是因為這看上去就像他在監考的樣子吧。