Sunday, 16 November 2025

被青梅竹馬抓來(略) (15):測驗當天狀態不好忘光光也是正常的

Character design: @kuonyuu, Illust: @音羽屋 commissioned by forretrio. Pixiv
Editing and re-posting are prohibited // 無断転載、無断使用禁止です

當天晚上庫里斯就開始批改測驗。原因無他,不過是晚上空閒得很罷了。

在他完成地下城的委託後沒幾天就有人向他傳話,表示學園教師不應該擅自跑進地下城也不應該另外接工作,下次請務必先行報備。下指令的人不用想也知道是誰,所以他只能乖乖聽話。本來想著偶而可以去練練手的他現在只能獨守這個豪華的教師宿舍。

他從幾次作業批改裡悟到一個道理:學生的成績越好,批改的難度就越小。正確的答案只要一個剔號就完了,錯的答案還要他費心力找出錯誤的地方寫下批注。很多同學都會犯下同一錯誤,那就相當於罰他抄寫同一批注十幾遍。

這次他留意到自己好像根本就沒多少機會寫批注。他本來以為這是偶然,但第一份如此、第二三四五份也如此,這大概已經側面說明了學生的表現。

考定義的第一題大家的答案當然都一樣,到了第二題才能看出學生之間的分別。庫里斯預設了兩個答案:一是按照題目敘述找出對應具體某種魔法並判定其屬性,二是論證就算有了名字和結果也沒有辦法確定其本質所以存在不確定性。作業裡有類似的問題,那時題目給出的是魔法的作用和結果,自然省去了辨認本質這一環節。測驗裡面題目的前提是名稱和結果,雖說不是只有結果但跟結果沒有大差別,那麼學生們又會怎樣回應呢?

大部分學生都還記得他講過不能單從結果下判斷,但接下來的論證就變得五花八門:有人像庫里斯在課堂上那樣試圖證明有複數魔法可以達到同一結果,只是他們忘記了題目上已經寫了魔法名稱;更聰明的學生根據給出的魔法名稱推論即使有複數魔法能達到此效果,這堆魔法都應該屬於同一屬性,因此答案就只能是該屬性。也有更簡單的回答比如用舉例引證給出的魔法至少有可能是某種或某幾種屬性,但以上所有回答都比庫里斯所預設最低限度的回答--無法確定屬性--要複雜得多。令人欣慰的是,雖然他的學生成功把幾行就能答完的題目寫成了論文,他們的觀念大體上並沒有錯,每個人都拿到很高的分數。

如果說絕大部分學生都無傷通過了前兩題是預料之中的話,第三題也有好表現就不禁讓人刮目相看了。比起第二題的半開放式問題,第三題要求的是用固定框架來進行分析。庫里斯在課堂上示範過,只是當時的例子不是這次考的。學生們真的懂得按著框架來嗎?這對二三年級的學生來說輕而易舉,但對那些沒接觸過正統教育的新生來說無論上課如何一遍又一遍地示範過,自己能不能照樣做出來永遠是兩回事。這種反複磨練才能使用的文字能力只是平民學生全方位的劣勢之一而已。

然而這些學生用自己的表現證明了自己天生神力,這種有步驟可循的問題好像完全難不倒他們。比起第二題的百花齊放,他們第三題的回答非常整齊而且與預設答案相差無幾。當然要拿到滿分還是頗為困難的,因為題目要求的是按著框架來,那就不能錯過框架裡面的每一步。在這裡就能看出學生程度高低:最強的學生完全按照框架回答、次一等的學生用上了框架但是漏了部分步驟而沒法完全論證,即使是像艾基爾這種文科能力最弱的學生也沒有離題而是嘗試把問題放到框架裡面。按照第三題答對大半才能在考試合格的標準來看艾基爾還是不合格沒錯,但第一個測驗已經有這個成績的話還會怕他熟練後不會做題嗎?

第四題的批改同樣比庫里斯想象中快,原因是很多人都隨便寫點不值一看的東西上去就算了,或者乾脆地留白不作答。不少學生早就知道考試的玩法,這題一看就是正常學生不可能挑戰的題目,自然也不值得他們作答。雖然在測驗裡也不試一下有點可惜,但他不得不承認這樣也省了他很大功夫。當然了,那些認真回答了第四題的卷子改起來一點都不簡單。

蘇菲在第四題評分準則裡面列出了不同的預設答案和各自己的評分方法,可是就沒哪位學生寫出來跟預設答案一樣。第四題考的是傳說中的虛構魔法,學生不可能代入自己經驗來解釋。你以為這樣就只能按著題目資料回答嗎?在這種情況下他們鬼扯起來更離譜。庫里斯的學術訓練也沒到可以輕鬆對每一種回答作出判斷,加上他又是第一次批改這問題。如果答題的學生多一點他大概還能在相似回答之間比較,現在他只能花時間逐個回答慢慢看。

在看似認真挑戰第四題的回答之中不少也是亂秀一通其實只拿下一點點分數的。這也不能怪他們,這不是隨便一個學生用心上課就能回答的問題。真正拿到高分的只有兩三個貴族學生,其中就包括了拿滿分的公主殿下。學園長或許沒錯,公主殿下其實不需要他的指導,就算換一個教師她還是會拿到一樣成績。但在傳授知識以外他就真的甚麼也做不了嗎?

不管這是因為他的教學起了效果還是這群學生的天分如此過份,這份測驗證明了他有資格在這裡混下去,這才是最重要的。不論是有沒有能幫上公主殿下的地方還是對其他學生的教育,如果沒法一直拿出可以壓住外人聲音的實績的話一切理想和計劃都毫無意義。

*

發還測驗卷當天他捧著三個大蛋糕進教室,學生在短暫的疑惑眼光後發出了巨大的歡呼。即使是那些吃遍王都的少年少女們,又有誰能拒絕這種邪惡至極的甜美誘惑呢?這是他給學生們和自己的小獎勵。蛋糕來自他從王都下午荼指南裡挑出來的一家名店。店家本來根本不想接這種急單,但聽見對方是魔法學園的時候立馬就變臉答應,要是在學園裡得到好評的話肯定對自己的名氣有幫助。

測驗拿了個滿意的分數老師又請吃蛋糕,這一課過得格外輕鬆,糖分的加成也讓他們清楚記住了庫里斯以測驗題目為例答題要注意的部分。

至少對絕大部分學生來說都是如此,但安娜貝爾是個例外。

安娜貝爾坐在課室的一角,沮喪地看著自己的試卷。雖然她分到一大塊水果蛋糕,新鮮的水果加上輕盈的忌廉讓人停不下來,但這些完全沒法消解她惆悵的心情,原因就是她測驗成績。

第一題沒問題,第二題她不小心用上了不屬於古典觀的論述被扣了分。第三題更慘,她完全不知道自己當時怎樣想的,瞎寫一通換來是一堆紅色底線和一個大問號。第四題還好,她成功從資料中抓到幾個能用的魔法特性所以拿了一點分數,但這也救不了她前面悲慘的表現。在老師的解說下她越發覺得自己當時狀態一定是差到不行才有了這災難性的發揮,連艾基爾也差點合格差點讓她欲哭無淚。

安娜貝爾出身王都的中產家庭。父親是醫生,母親是草藥專家。她擅長的是水屬性,從小就展現上過人的魔法天賦,家人也投入了大量資源助她成長。她家給她買進各種書籍和魔法道具、讓她小時候讀上正規的學校、還花重金請了家教來教她魔法,為的就是讓她有機會進魔法學園。她家知道學園很看重魔法上的特長,正好安娜貝爾在在家人的薰陶下對魔藥產生了興趣,所以請來的家教都有著醫療背景。這當然不便宜,但她家還是可以負擔得起的。

這樣的她在學園的入學試中表現優異,她的特長也讓她順利通過面試進到魔法科裡去。從開學到現在她仔細觀察了同班的每一位同學,得出的結論是自己在魔法科裡不算差。比上肯定打不過那幫小貴族和小天才:那些貴族之後得到的資源顯然不是她家咬咬牙就能擠出來的,而那些有著真正魔法天賦的人也不是她有了家教培養就能扯平的。可是她怎樣也應該能贏那些僥幸進來、沒受過甚麼正規教育的人啊!艾基爾就是最明顯的例子。她承認她一對一的情況下她絕對打不過艾基爾,但她實在不覺得對方在讀書考試方面能好到哪去。她並非討厭艾基爾或者把對方設成假想敵,她只想告訴自己在這個班級裡她不是墊底的而已。

開學以來老師教的一直都是古典元素觀。除了還在用古典框架練習魔法的下三濫以外,這是正常的魔法師沒啥興趣的課題,可是她出於好奇在書籍裡面看過。老師教得很快還把一堆東西丟到預習而且說是預習其實是自習,但她還是能跟得上老師的進度。反觀班上有幾個學生不時就兩眼茫茫一臉根本聽不懂的樣子,更加坐實了她比下有餘的想法。

但是這次測驗狠狠地打了她的臉。老師說了大部分人的表現都比預期好,除了一兩個人。這一兩個人不就是指她嗎!雖然沒有被公開處刑,但自尊心使安娜貝爾更沒法抬頭面對自己的卷子。蛋糕在她口中索然無味,老師的解題每一句都像在嘲笑她的愚鈍。老師在卷子的結尾指示她有空去老師辦公室見他,她滿腦子都是她會不會被老師嫌棄責罵。

她沒在在午休時段去找老師。放學後她獨自躲進了圖書館,確定沒有其他同學看到她後才偷偷摸到老師辦公室面前敲了敲門。

「請進。」

映入眼簾的是大到有點空蕩的辦公室。老師不在正中央的辦公桌,扭頭一看才發現他在窗邊的沙發上,沙發旁的矮桌上正放著幾片蛋糕,想也知道是今天早上剩下來的。蛋糕旁邊放著茶壼和杯子,顯然他在享用這些蛋糕。

「安娜貝爾同學,快過來吧~」老師揮手著她過來,他手上還拿著叉子:「這些蛋糕都是今天早上新鮮做出來的,奶油放久了會變得難吃,現在不吃掉太可惜了。我下課前問還有誰想吃,結果他們都太矜持了不敢要,現在都便宜你囉。」

她有點僵硬地坐到老師對面,老師找來另一套餐具給她:「今天你吃的是哪個口味呢?要不要試試別的?」

「我……吃的是水果口味。」

「哦哦~那個好像最熱門呢,現在就剩下一塊了。你要再試來一塊水果口味的嗎?還是想試試別的?」他在矮桌下放摸出另一個杯子,為她斟上一杯熱荼。

「謝謝老師。」心中有很多想說的話,但面對蛋糕的誘惑她還是聽老師的話吃了起來。除了水果蛋糕以外,另外兩個蛋糕分別是蘋果蛋糕和紅茶蛋糕。蘋果蛋糕上面以烤乾的蘋果脆片作點綴,放了整整半天還能保持脆脆的口感和香味,下面帶有蘋果泥的慕斯則帶來了清新的衝擊;紅茶蛋糕看上去跟一般的奶油蛋糕沒兩樣,一口下去才感受到那濃烈的茶香。明明聞不到卻又好像真的在喝茶一樣讓口鼻同時享受茶的餘韻,她不禁讚歎蛋糕師傅手藝的高明。

她一邊吃一邊偷偷留意著老師的反應。只見老師都在吃蛋糕沒空理會她,她也只好一起跟著吃蛋糕。她提醒自己要慢慢品嘗,可是這味道實在讓她停不下來。自己的懊悔和對老師的愧疚此刻化為純粹的食慾,兩口蛋糕一口茶很快就把蛋糕給掃光。

老師給她再倒了一杯茶:「蛋糕好吃嗎?」

她十分率直的回答:「嗯,很好吃,從來沒吃過這麼好吃的蛋糕。」

「那就好。偷偷跟你說一個秘密,其實我挺喜歡吃甜點的。可是像我這樣一個人去吃的話實在有點尷尬,而且沒法試到足夠多的品項。」老師笑著回應:「但如果是請你們吃的話我就可以一次點好幾種,而且還能聽到你們對每一家店舖的評價。這樣我就知道哪一家最好吃了。」

「如果……老師每次都選這個等級的甜點,我想我沒法分出高下呢。」

「其實不然。有些人認為食物應該用各種標準檢驗過才能分個高下。我的看法更簡單,只要遵從內心的選擇就好了。打個比方,這三件蛋糕你覺得最好的是哪件呢?我給你五秒。五--四--」

才喊到四她就衝口而出:「水果蛋糕。」

「我也認同呢。用上大量的新鮮水果這件事本身就不便宜,可以吃得出每一顆水果都在最新鮮的狀態,這必然是精挑細選過的。鮮奶油要做得如此輕盈才能成為水果的襯托,讓人一口接一口停不下來。從這三個蛋糕剩餘件數看來其他同學也有著同樣的想法呢。」

在一番只談美食不講正事的對話裡安娜貝爾可見的放鬆了下來,似乎不再糾結自己測驗的事。老師這時才切入正題:「所以,我想你過來找我是有甚麼要談的吧?」

剛才的蛋糕攻勢讓她不知道她應該道歉還是辯解:「我……」

「噓。」老師的手指放在嘴唇上:「你覺得,這個課題你會還是不會呢?」

「……會。」

「那麼,早上的解題環節你都聽得懂嗎?」

「……會,老師都講得很清楚。」

「如果有一份差不多的考卷,你覺得你會做嗎?」

「會。」

「那就沒問題了哦,幫自己找個借口就好。嗯~比如說那天身體不好,剛好東西都忘光了?」

「哈?」面對這個轉折她有點轉不過來,但老師的眼神無比認真。

「跟我說一遍:我那天身體不好,剛好東西都忘光了。」

「……我那天身體不好,剛好東西都忘光了。」

「很好,我明白了。」老師站了起來:「身體不好加上第一次測驗壓力大,東西忘掉也沒辦法。我知道你下次一定能好好表現的,對吧?」

彷彿剛才老師的指令還在她腦海中,她反射性回答道:「會的。」

「那就好,有不明白的地方記得要問我或者其他同學哦。」

……

安娜貝爾離開辦公室時整個人都是懵的。

她真的讀懂了那些教的東西嗎?再來一次的話她真的能考好嗎?如果是早上的她絕對不敢這樣說。但是老師讓她親口說了出來,她就有種感覺自己真的能做到。為了不讓自己的自我感覺再次落空,她從今天起就打算加倍努力學習,這樣才對得起老師。

或者對得起他買的蛋糕。

***

當初我聽到日本台灣有一種甜點叫水果三文治後我就覺得很奇怪,濕答答的水果夾在麵包裡誰要吃?一看才知道他們用大量奶油把水果包起來夾在白麵包裡,這就合理多了。其實水果三文治其實跟水果蛋糕只是一線之差,分別只是外層為麵包還是蛋糕而已。再退一步把微鹹的白麵包換成偏甜的餐包或者生麵包,本質上跟水果蛋糕已經沒分別了。

不得不說,甜點作為籠絡手段真是百試不膩。

在我讀過的那所大學裡有個傳統,老師會在最後一課帶個蛋糕來,學生一邊吃蛋糕一邊上課。作為回報,學生也會在考試中拿個好分數證明自己沒白吃這蛋糕。這些蛋糕多半都是工廠生產等級的超市貨,但這個行為的意義當然不在蛋糕好吃與否本身。至於庫里斯這種看起來就要一直買高級蛋糕回來的人真的很壞,把標準拉高到這樣叫別的老師怎樣活的下去啊。

為了不在後記放上過多廢話,我就只說另一件趣事好了:我曾經參與過一項研究,內容是一些創新的評分方法。其中一個是這樣的:把所有學生對同一題的回答放進一個池裡面,電腦會一直抽出一對對回答出來。評閱者的任務不是打分,而是單純回答左右兩個回答哪個比較好。而且這個比較不需要精細的準則而更像是直覺的判斷,最好在三十秒內就看完一對。透過演算法我們就能把這堆回答排成一個完整的名次,而實驗顯示這個名次和實際的分數名次十分接近,而且這樣決定名次花費的時間還能大幅降低。

這會是未來的改卷潮流嗎?我不知道,但我大概更偏好傳統的改分方法吧。至少傳統方法才能針對錯處讓學生作出改善,使用比較法的話就有太多資訊缺失了。之所以提到這個評分方法是因為庫里斯在批改第四題的時候覺得每個回答都相差甚遠,所以他沒法拿出一個通用的評分框架來應對所有回答只能逐個處理。我在想,在這個回答之間沒有可比性而且樣本數不足的情況下,使用比較法可行嗎?

最後也是例牌的插圖時間。這次是音羽屋老師的作品!要求的題目是校園裡某個角落的庫里斯,而音羽屋老師選了植物園。植物園在蠻多作品都出現過,比如哈利波特的霍格華兹或者火紋風花雪月的學園裡溫室都是個標配,同樣地在這個魔法學園裡有溫室或植物園一點都不奇怪。唯一奇怪的肯定是一個冒險為主的魔法師應該不會在暑假跑去植物園吧(望)。

Monday, 10 November 2025

9/11/2025: 吱爪藍道大混戰

樂天吱以4:1擊敗中信爪贏下2025台灣大賽。

雖然我本人一直有關注棒球,但我還真沒寫多少棒球相關的文章在這裡。也就2019和24的P12、2023的WBC和2019的TS而已。我以為我在CPBLTV草創期(2014-)寫了一堆,結果是沒有嗎。

不過怎樣也好,這是桃猿六年以來第一次奪冠,而且比賽過程精彩絕倫,怎樣也值得慶祝留念一下。要留念還有一個更深層次的原因,那就是這支冠軍隊伍有點過去六年五冠Lamigo的味道。

很多人對吱吱的印象只剩下四割大王那個彈力球年代,也就是那個狂轟濫炸,沒輸十分都覺得有希望追回來的年代。可是別忘了更早時期時球隊不是這樣的。正如我足球挑上車路士是因為喜歡當年的一比零主義一樣,我挑上Lamigo同樣是因為其一比零主義一樣。棒球當然不太可能一直一比零,但是用幾把大鎖在七八九局把領先牢牢鎖住也是同一原理。那時的Lamigo擁有救援王米吉亞,有出道即巔峰(出賽場次上)的香腸還有Boyo,這種投手上的安心感是一比零主義所追求的。

來到2025,我們發現川岸強教練治下的牛棚投手一個比一個強。這已經不是今年才有的事了,去年P12的種花鐵牛棚我吱實在功不可沒。你以為P12那批投手倒光就沒戲了嗎?沒想到陳陳大丈夫上演老將不死,不但沒有受國際賽影響球速還持續進化,今年投出0字開頭WHIP的鬼神成績;R豪是回歸正常水準,但有不算季末疲勞的話整季ERA可能只有0.4的小朱頂上。就算牛棚要吃到三四局,賴胤豪、呂寶、R豪等就算不是大魔神也還是值得信賴的等級。今年例行賽我吱一分差勝率為七成,誇張到把另外五隊的一分差勝率打成五成以下,靠的就是這鐵到不行的牛棚。

更可怕的是,牛棚在例行賽末段本來累得東歪西倒,來到季後賽居然又回春了。莊77從12強回來以後就沒好過,現在居然能150連發,在速球夠強的掩護下讓他屢屢下莊,甚至只在牛棚一直熱身都能為隊友上buff;賴胤豪則是152、153連發,這好像也是前所未見的數字吧?

當然,要兌換牛棚壓制力的前提是有個能吃長局數的的洋投在前面頂著。吱吱受制於老虎狀態不佳、克羿等新一代土投未成熟,加上三號洋投不行,季賽就算有發揮也是有一場沒一場。來到季後賽就不同了,威能帝和魔神樂齊齊特攻,就問你怕不怕?喵喵也還好,爪爪現在看到我吱的洋投怕是要有ptsd了。十年前有明星中零日無安打,十年後有二洋投風火輪,種花始終還是那個得洋投者得天下的聯盟。

甚麼?你說對面的羅戈李博登也很厲害?

那就比拼拼看看誰比較肯為球隊粉身碎骨吧。

也許是劉家和紅中留下來的風氣加上一代接一代的精神傳承,我總覺得我吱的凝聚力是數一數二好的。球員之間的互動,會互相為其他球員發聲(比如超級喜歡怒摔頭盔),甚至不少洋將也能快速融入,甚至成為球隊氛圍的一部分,這也是他們肯在季後賽拼命的重要原因。你以為威能帝挑戰賽中1日關門是新鮮事嗎?明星當時也是1467,而且別忘了同場風火輪還有感情好到父子檔一起來台的蘭斯佛(直到他被紅中玩壞丟掉)。這裡不是世界大賽,洋將未必有足夠動機為了冠軍而燃燒,甚至把自己的潛力一併燒掉。我吱能持續吸引和養出這種洋將,對球隊戰績實在功不可沒。

一日球迷看到這裡,大概覺得我吱這次奪冠實屬理所當然、水到渠成對吧?

不是喔,不是這樣喔。

挑戰賽威能帝G2被打爆退場,G4九局下面對守護神(?)落後三分,兩個都是基本可以打包回家的局面;台灣大賽被爪爪以洋投碰洋投每場都鎖個六七局,G2在2:1領先下要面對無人出局滿壘的死局,G5打到七局還被對面雙洋投鎖到落後四分。偏偏每次我吱都能過關直至奪冠,機率之低令人咋舌,用另一個說法則是彰顯出這隊強勁的實力和打不死的精神。有了這些大場面加持,本來每年都有一個的冠軍含金量立刻拔高,我想這會成為種花球迷心中的經典之一吧。

嘛,這篇其實應該早在一星期前剛打完就發出來的,卻因種種原因拖到現在。這一星期的時間裡發生了足以讓種花球迷徹底忘記台灣大賽的系列賽,也就是道奇對藍鳥的頂上對決。G3十八局和兩位長中繼燃盡的表現、G6那球卡死在縫上的二壘安打、G7的陽春砲連發加鎖血山本……奇跡多得像是喝水一樣,就連MLB官網的win probability都在不停翻轉,不讓讓人懷疑到底這些低概率事件是真的低概率,還是只要球員夠強張力夠高就會發生?

嘛,我感覺兩邊都是。

一個低概率的事件要發生首先要有合適的前置條件,還要在投打對決和攻守對決出現指定的結果才行。前置條件可以泛指任何應該決定的條件,小至投手用球數、該局分數,大至比賽勝負都包括在內。季後賽最特別的一點就是其注碼(stakes)不是例行賽可比擬的。例行賽只要代價夠大,輸一場是可以接受的,在季後賽則完全不可能。

在這種高注碼對決下雙方自然帶著短期決戰的想法進行調度,超高強度的消耗下投打呈現又菜又強的二象性:你以為是打得好嗎?其實是投手沒力了;你以為是投得好嗎?說不定打者也快累到揮不動了。這種現象從G3後半段開始不停出現,比賽充斥著大量打上得點圈然後以平凡滾地/飛球出局作收的半局,用另一角度看最後的關鍵得分就是這海量機會中出來少數最後得分的半局。正常是低概率的事件在樣本夠多的情況下概率也許沒想象中低。

再仔細看的話這些高張力的play注碼高得可以說是一個play定勝負,無論結果倒向任何一方球隊勝率都會產生極大變化的那種play。吱爪G2八下領先一分無人出局滿壘和道奇G7九下平手一出局滿壘的局面。只要做錯了就會掉分,掉分就會輸掉這場,輸掉這場就會輸掉系列失去冠軍,這可是萬鈞之重的責任壓在單一個play裡。你是球員的話你會怎樣做呢?照平時的方法去防守,只要不到被記E的程度就好?多看福本伸行的賭博漫畫就知道,當注碼是如此巨大時人們總是為了那一點點「最佳結果」的機率而放手一博--在棒球場上的play也不例外。馬傑森空手接小拋球直傳一壘製造雙殺,Pages跑了123呎暴扣隊友接球,這都是我們平時不會看到的play,卻因為張力夠高而出現。更進一步說,也許大谷的連九上壘也是季後賽才會出現的奇景吧?說不定一直延長的話藍鳥不會IBB而是乾脆正面對決,輸了就算了。

當然一切前提都是球員平時足夠努力,成果才會顯示在賽場上。這些play成功率也許沒想象中難,但一定要有足夠訓練,加上季後賽帶來的額外腎上腺素影響下,流傳後世的各種play才得以一個接一個誕生。最佳的反面例子就是去年洋奇G5,Cole的誰在一壘和法官的抓了個ball可是直接葬送了扳回2-3的希望。事後發現道奇的球探報告早就指出對方依賴天賦而努力不足,只要把球打進場內就能等著看他們的笑話。

我本來沒打算寫太多關於世界大賽的感想的,但是這大概會是近百年最扣人心弦蕩氣迴腸的世界大賽了。論緊湊程度台灣大賽確實比不上,但看了5+7場比賽我只在台灣大賽G2看到胃痛也是事實。我想,這就是在地野球的魅力吧?

不過看著樂天在季中到季後各種亂搞也是挺讓人揪心的。希望會長親自己對面大老闆聊是真的有用吧,唉。

Monday, 3 November 2025

Simon Marais 2025


The tournament was on Oct 11 but I tried not to disclose the problems before I could find them somewhere else on the net. Last year it was quick as someone uploaded part of it to AoPS, but that didn't happen this year. Perhaps it's due to low popularity for the questions posted? I don't know. When I tried to write comments almost 3 weeks later I find it quite difficult when I have forgotten everything.

Welcome to my brief comments 2025 edition. Expect that to be brief, focusing on my thoughts more than the problem/solutions themselves as I tried to wrote everything in like 60 minutes...

A1. A well-received intro question. We don't really need those ordinary computational question, we need questions that truly takes a bit of mathematical essence to solve (but not too much). What is the essence we need for this question?

Growth rate.

Since all functions are positive here (do not matter too much actually), a higher degree polynomial will always outrun lower ones eventually regardless of the coefficients. Since $f = O(x)$, we know that it can only be matched piecewisely by linear functions, but the curve of $x^2$ cannot be reproduced by piecewise linear functions (proof? That's exercise).

A2. Well I am confused here. What do you mean by average? Are you sampling uniformly or what? In that case I think it shouldn't be too hard since matrix like that is all over classic coding theory. I can't give a detailed comment just because I do not bother to delve deeper with the question written so badly.

A3. Wow. At the first glance I thought $A^k$ retains the one row at the bottom -- in that case it should be a straightforward simple induction problem. But fortunately no, this is as hard as an A3 should be. To show that $f,g$ has full distinct real root I tried of Sturm's theorem, but that turns out to be troublesome when you can't even verify if the polynomials are square free. I was so desperate but then I looked at the recurrence relation again: $f_{k+1} = (2+t)f_k - f_{k-1}$

Che...by...shev...?

I remember this guy('s polynomial) only because I wrote about elementary trig limit squeezing one month ago when I tried to expand $\sin nx$, but I am ultra surprised to be able to use that again so soon, just like how I used Galois twice in a row.

More precisely, we can transform the recurrence relation of $f$ into the standard form for Chebyshev polynomial of $T_{n+1} = 2xT_n - T_{n-1}$ with proper initial values. With $T_{k}$ associated with trigonometric function of frequency $\frac{2k+1}{2}$, it is not surprising that it yields full distinct real roots. On the other hand, $g$ can be resolved similarly into another trigonometric expression, then the existence of full distinct real roots plus the ordering is clear immediately.

I wonder if there are other solutions. Chebyshev sounds like too nasty as the only trick forward...

A4. Fourier?!? Everything screams about Fourier approach when it is frequency related. I thought for a while but couldn't come up with a solution in that way, so let's head back to the key element of the problem: finite dimensional space.

Think about the algebraic basis (i.e. allowing infinite linear combination) of $\left\{ 1, x, x^2, ...\right\}$ which we call a Taylor expansion. What if we double the frequency? It sends $x^n \mapsto 2^n x^n$. If a non-polynomial function $g$ admits a Taylor series then the set $\left\{ T^ig \right\}$ *might* have infinite dimension. Of course we would run into the rabbit hole by expanding the *might* argument going through argument involving infinite, so the best approach is to work on the other side instead. That is, to play with finiteness. 

Let $T\in L(V)$ be the frequency doubling operator. We know that $T$ is a bijection. Since $V$ is finite dimensional, $T$ has a matrix representation with respect to a given basis. More importantly we can use Cayley-Hamiltion so that there exists coefficients $c_i$ such that $\sum c_iT^i = 0$. That says for every $g\in V$, $\sum c_iT^ig = \sum c_i g(2^{i-1}x) = 0$. That alone, proves that $g$ has to be a polynomial -- the Taylor series of $g$ solves $c_i$ since $[g]_{V\to V}$ for canonical basis $V$ defines $g$. Using growth rate again one eliminates the tail and confirms the claim.

B1. Surprisingly 'complicated' as a Q1 with how it was worded. For once I thought that it should be possible for all $n$, but more detailed investigation proved otherwise. Focus on the jam when non-coprime numbers are forced to map to the same number. What are the largest possible non-coprime pair given $n$? It should be simple enough from here.

B2. Remember how a triangle is defined by two vectors? Any polygon can be triangulated and decomposed into these vectors. Convexity is important to ensure validity of the triangulation which in this case is given. You don't even need to know much about affine geometry, even simple vector calculus would do.

I wonder why is it not for convex $n$-gon. A quadrilateral is certainly too easy for a Q2. 

B3. Nice problem on linear algebra and complex number. It looks really scary with all the powers, but it's not that bad if you calm down. To me, B1, B2 and B4a (see below) are really manageable, meaning you get 2 hours+ for B3. Even better, there isn't much calculation or bashing -- you realized it's impossible to expand those brackets anyway. Everything is so symmetric and neat, all you need is the right idea.

Since the determinant is zero, there exists a (real) linear combination $\sum c_k (z_j - \omega ^k)^n = 0$ for each $j$. That is, the polynomial $f(z) = \sum c_k (z - \omega ^k)^n$ has $n$ distinct roots $z_i$. Since $f$ is of degree $n$ we know these are all the roots with $\sum c_i \neq 0$, but we need to ensure that $f$ is non-zero.

Suppose $f = 0$. That means the coefficients of $1,x,...,x^{n-1}$ gives $\sum c_k \omega ^{kr} = 0$ for $r = 0,...,n-1$. Notice that this is equivalent to the linear combination of rows in the Vandermonde matrix that sums to zero. Since the Vandermonde matrix is invertible, that means $(c_i) = 0$, a contradiction. 

Now, by factor theorem we conclude that $f(z) = (\sum c_k)\prod (z-z_k)$. Comparing the constant term at $f(0)$ we get $\sum c_k(-\omega ^k)^n = (\sum c_k) \prod (-z_k)$, hence $\prod z_i = 1$. 

See? Almost zero calculation. Grab the essence of linear algebra and you will reach the conclusion easily.

I am actually quite surprised that the root of unity is only used at the Vandermonde argument as well as the vanishing part at the end. Is it possible to generalize this beautiful result? 

B4a. I would rate this at Q2 difficulty, but this is consistent vs past B4a problems.

First of all, $q = 1$ is the trivial case, yet very easy to miss out. After that we look into higher order solutions.

Assume $q \geq 3$. Notice that $(x+1, x^2+1) = 2$, meaning that they do not share any other prime factors. This is extremely powerful because now you know they must contain high prime powers on their own, which is very difficult.

Suppose $(x+1, x^2+1) = 1$, then $x+1 = a^q, x^2+1 = b^q$ for some $(a,b) = 1$. But then we know $(a^2)^q - b^q = a^q$. The difference between two q-th power cannot be that small. Some simple bounding gives the conclusion of no solution. Similarly for the $(x+1, x^2+1) = 2$ we know that $\nu _2(x^2+1) = 1$ by checking mod 8 so all other factors of 2 were on the $x+1$ side, and we get the same conclusion similarly.

b. Well the structure of on the LHS is completely broken in the generalized case. The structure of (a) completely relies on the factorization, or equivalently the factoring or $n+1$. Are there even results that are general across all $n$?

Interestingly (a) didn't ask about the case $q = 2$, but then you realized they didn't forget about that, instead asking that in (b). Perhaps the committee believes that the case for odd $q$ (or simply, $q = 1$ and $q \geq 3$) is enough for 7 marks in Q4a? 

The case $q = 2$ is where you can actually get solution via Pell's equation which is rather standard. One may argue as above that you do not get solution due to wide gap for large $x$, and below the bound there are two solutions $(x,y) = (1,2), (7,20)$.

C1. Oh a partition problem! Not the NP-complete one you would have expected, this partition is very straightforward.

C2. It sounds like the difficult variant of B4 (by the way, the variant of B4 for rational solution sounds really interesting although I believe the answer is still no solution for $q \geq 3$...), but no. This is a monovariant quartic equation. All you need is to check the determinant so this is not very fun. 

A funnier question would be: which one fits better as a Q1 problem, C1 or C2?

C3. Answer must be no right? I'd imagine a very simple expression should the answer be yes. Kind of a typical scope defining question. It should be doable as long as you extract some invariant among all possible angelic expressions. For example the change in slope? For the monovariant case you can define the change in slope by $\lim _{x \to a^-} f'(x) - \lim _{x\to a^+}f'(x)$. For example, the change in slope of $|x|$ is 2 at $x = 0$ and zero everywhere else. This is unchanged by applying any other operations. You may think about $|x|+x = 2\max (0,x)$ but no, the change in slope is still 2 -- don't forget constants and division are not allowed here!

And, we just need to generalize the above to higher dimensional and work very carefully. Perhaps the oscillating measurement $osc(x) = \lim _{r\to 0} \max _{u,v \in B_r(x)} \| \Delta f(u) - \Delta f(v)\|$? I feel like there are lots of traps here, but it's not extremely difficult. 

Still harder than the insulting 24A3 and 23C3 though.

C4. The old skill checking problem is back. 

If this is a question on a convex analysis course, it would have been a standard tutorial or assignment question with answer within 5-10 lines using convex conjugate and infimal convolusion. For those without exposure to convex analysis result? Well, good luck. I have zero idea how to do that without it.

I have exposures to convex analysis because, out of all, I call myself an analysis specialist. I spent time on convex functions from topics related to harmonic functions. On the other hand, I can hardly imagine anyone else, let alone just undergraduates, to run into such topic. Who the hell's going to study convex analysis out of nowhere?!?

***

Man I feel much better about the problems this year. Less fancy but stupid intro questions, more actual problems that are precise and elegant, demanding depth rather than plain bashing. This is also a year without generating function finally lol.

Yet I still feel like something is off. It is so analysis biased, and I am saying that as an analysis guy. Any algebra and probability (other than the so absurd A2)? Any actual calculus? Graph theory, combinatorics and game? I am always amazed by how Putnam comes up with questions with such short description and solution yet so deep that almost no one solves it. Simon Marais is making good progress towards that.

An additional remark about LLM performances. Gemini and GPT managed to solve most of them but both with obvious gaps occasionally. Grok is so messed up even with the ability to cheat (search online). Below are some quick comments about their performances:

A3. The bad habit of assuming pattern is exposed in A3 where they assume something is true after looking at a few lower cases, they can only answer after you instruct them to solve a single specific step -- to solve the recurrence relation of $f_k$ in this problem. 

A4. This is very hard. They can come up with the linear combination $\sum c_i T^i = 0$ but the rest is a huge hurdle. It is not easy to set up an analytical goal then to solve it.

B3. Well done without much problem, guess this is pretty standard.

B4. Similar to A3, easily purged conditions that are far from clear. Only one of them managed to get multiple solutions for $q = 2$.

C3. Unsurprisingly worst of all. Expression type of problem are usually much deeper than how they are defined, and clearly the LLMs are merely scratching the surface. They exhaust obvious cases, but none of them even got close.

C4. Since this is a skill check, if you know the trick then you can solve without problem. Clearly one or two model know the trick, and the rest do not.

What can we learn from the LLM performances? Well, they can calculate and prove quite well, but they really suck at inventing new tools to deal with existing problems. At least up to now.

And that's another year of the tourney! What do you think about the problems? Please tell me with comments below and we will see again in 2026/when answer's out!

Friday, 3 October 2025

Personal site deactivated

最近才發現自己的個人網頁倒了。

沒有任何通知,沒有說我的網頁inactive,就單純地、默默地變成DNS resolution error。

其實我應該早就有心理準備了。自從上一次修整右上角自我介紹把個人網頁的連結拿掉了以後能連進去的就只有極少數筆記頁面,可說是徹底變成孤島的狀態。流量數據顯示最後一次有我以外的人點進去已是去年的事,最後一次被web archive抓取則是前年的事。就像那些osu screenshot太久沒人點的話會被砍掉(所以請大家幫忙有空就點兩下^^"),我想我這網頁被砍也不意外吧?
嘛,說不定其實有通知但我沒留意呢。我剛剛在垃圾郵件堆裡發現一封byethost的宣傳,說不定我的deactivation notice早就被系統丟到垃圾郵件再銷毀了?說起來我一直以為byethost是bye the host的意思,現在認真看了一下看來不是呢。

這已經不是第一次我的個人網站倒掉了。這個框架是我2011前後搭起來的,大部分東西都是早期的筆記。2013前後無故倒掉,先用了一個廣告很多的臨時站點,然後又在t15用了幾年。在2020前後又換成了byethost,到現在終於又倒掉了。雖然供應商一直在變,他們背後用的卻清一色都是那個很像vista的cpanel。可惜我現在已經登不進去了,只能乾巴巴地望著那個登入畫面:
對我來說是有點可惜但也不至於悲痛欲絕。主要是網頁上有的東西我這網誌都有,而且我還有完整備份。反正那破網站沒人看,在網上看跟我我本地打開來也沒分別。我想最大的不同是那些筆記我當初真是在網頁上排版的,以致於抄過來網誌的時候不光排版沒了,那些數學的次方和化學的電荷標示全亂掉,連空格換行也沒了。那是我唯一偷懶不想大修的東西,但拿下又很可惜,所以就一直放這了。想看那些排版亂掉的筆記?去筆記欄,找那些沒加上連結的筆記你就能看到了。

啊,我那網頁還附有一個Discuz樣式的論壇。那是我自己架網頁必備的東西。不知為何我這網頁的論壇不是自己從SQL搭起而是外接的,所以那論壇也倒了快十年了。說起來我好像從沒在網頁上弄過「留言版」呢。網站一直搬家不算的話,在這之前我應該另外弄過兩三個個人網站吧,不過那又是另外的長篇故事了。

總之,廢話就說到這裡。我想說的就是網站已經掛了。大部分網站有的在這裡也能找到。如果沒有就是沒有,讓它們隨時間消逝吧。如果你真的很想找某一項東西,歡迎以留言或其他方式跟我聯絡。

嘻嘻,這是久違了的公告。

Thursday, 25 September 2025

24/9/2025: アイ

颱風天。

香港這年已經經歷了五次黑雨(四次是兩星期內發生的)兩次十號風球,後者是差不多六十年首見,前者是第一次只因暴雨警告只存在了三十年左右。

這次的樺加沙帶來頗為持久且範圍廣泛的超強風力和接近天鴿山竹的風暴潮。還好其路徑最終比預計中南了50公里且最接近時正值退潮,否則後果不堪設想。想想看如果航海學校那颶風風速+200公里陣風吹進核心城區會怎樣呢?

不過老實說,今年的幾次天然災害加起來也沒有奧克蘭那次大洪水來得深刻。也許這就是基建的威力吧。

哦這次我還出去玩了,沒法親身感受這號稱山竹再世卻疑似跑偏的颱風,不過我也已經習慣異地追風就是。

說到颱風的預測誤差,這次的天文台可說是大贏特贏。任憑EC等預報模式和各大天文台每6小時瘋狂上下亂跳,天文台早就氣定神閑從頭到尾指著上川島不動。唯一失誤竟是臨門一腳發現颱風比想中南,那縮回去的副高居然還有辦法引導颱風向偏西方向走。不過這也就5天預報裡出現50公里錯誤而已,根本神奇奇技。

仔細一看,原來天文台的預測跟Google的AI模型FNV3走得很像。不是說誰抄誰的問題(以前大家不也是照抄EC和GFS),而是FNV3的表現實在太亮眼了,一整個風季都是這樣。在這一役中FNV3力排眾議在颱風還未生成就看好其強度上看Cat4-5,當時連上看195km/h的天文台都已經是樂觀派,但颱風很快就用實力證明自己真的可以12小時從強烈熱帶風暴爆成140kt的怪物。在巴士西折後轉西北再轉西北偏西同時保持強度也是它率先提出,事後也證明這是正確的答案。天文台也不是沒有「付出」--FNV3的強項是路線集成,但給出一條預測路徑不是其強項,在這方面天文台給出的路徑甚至比FNV3的median track更穩定準確,實在值得敬佩。

不經不覺,AI預測模型短短一個風季就把傳統模型按在地上摩擦。我想其中一個因素是AI模型在預測位勢高度和相關中/大尺度系統方面特別優秀,而這又是決定颱風路徑的重要因素。連帶著對近地溫度之類的預測現在也變成AI大勝,這點應該幫的上日常老百姓。

但是AI這麼強,真的就能取代傳統模型了嗎?暫時未必,像是風力預測就是它的弱點之一。這裡的風力不是颱風那種風力而是一般的風力風向預測,現在看起來對初始場和初始場的分辨率過於敏感以致表現一直提不上去。對一般人來說只要不是下雨,非颱風的風力預測重要性幾乎為零就是。

在風季之後就就是西風槽與高壓共舞的秋天和暴躁極地渦旋隨時發作的冬天了,兩者的預測難度都不是夏天的大氣環境能比擬的。到底這些挑戰者會繳出甚麼樣的成績單?讓我們拭目以待。

*

講完AI預測天氣,那就順便講講AI插圖的近況好了。

一直到三個月前,如果你問我有沒有考慮過用AI給自己角色畫插畫,我答案都是否定的。市面上的diffusion model已經不錯,很多現成的checkpoint,但它們從來沒達到我在細節的量上的要求。

我經常用一個比喻,就是我不喜歡去看那些仿建築。在異地復刻一個巴黎鐵塔,復刻一個哥德風建築有意思嗎?就算復刻方是號稱匠人精神的日本,它也不可能復刻到每一個最微小的細節裡。當年的建築用上了甚麼材料甚麼工法?你能確保細至每一根螺絲上面的油漆都能復刻出來嗎?唯一有認真復刻到這程度的也就巴黎聖母院了吧,看看人家用了多少錢多少人……

AI所繪的插圖也有類似問題。我在小說中所用插畫未必能反映這個變化,但我所找的繪師很早就脫離了普通畫bust-up那種,而是找那些可以用充滿細節的插畫來說故事的繪師。一旦你想要把細節填滿,AI所生成的插圖就開始出現問題。它不會處理細節塞滿的要求,反而在考慮這個prompt和那個prompt有沒有衝突,有沒有方面一次滿足最多prompt……最後成品就是四不像的奇怪繪圖。

以上說的都是指一次或數次diffuse出來的結果。找AI咒術師一直溝通當然可以,用PS給圖片做後期處理也沒問題……但這些都不如直接找繪師委託來得方便便宜啊。何況多一人的作品就能多一份的靈感,你看我不都這樣嗎?

直到我最近遇上兩個新產品。

一是某拿著投資跑到外國燒錢讓我們爽爽生圖的K站。Checkpoints夠多,風格多且各有特色。以下是我用我最愛的checkpoint做出來的庫里斯擺拍:


天啊看到那兩隻超可愛的月月了嗎?我都沒說甚麼,是模型自己給我送兩隻上去的耶!

我決定如果我再做服設的話就拿這張做參考好了,小說中如果有機會的話也絕對會配一隻月月給庫里斯。

如果說上面只是很好的model和checkpoint,但不能跳脫prompt問題(的確是這樣)的話,那麼以下這個新產品就肯定是劃時代的發明了。

奈米香蕉(nano-banana)。

無獨有偶,FNV3是google的產物,這香蕉也是google的產物。這邪惡公司好可怕啊。

比起GPT和Dall-E那種把你的指令換成prompt再喂進去model那種做法(即便到了GPT5+吉卜力熱潮那會也還是這樣),nano-banana處理自然語言的能力真的到了可以直接處理指令的地步。以下是我用上面擺拍生出來的設計圖:


令人驚艷的不是那些看起來一樣而重複的表情包,也不是抄下舊圖背景再創作,而是那像是膠紙貼住四角的表達方式,這才是我想看到的東西。學會了抓住自然語言的意境畫出符合用家心底想看的東西,那才有一絲和人類競爭的希望。

當然那兩隻月月也畫得很可愛啦。

無獨有偶,上面兩張繪圖都是我用比較簡單的指示所產生的第一張圖。發現合我口味以後不論用同一、類似或更詳細明確的指示都不能產出類似效果的圖,顯然這兩張都是撞大運撞出來的,模型距離能高度處理指示還是有一段距離。

同場加映線稿版,這麼簡單的改動指示執行上來就沒甚麼壓力:


*

以上就是一邊看著追風直播半夜寫出來的隨筆,希望各位追風的時候也注意安全。

甚麼?你說已經登陸了?

……

Wednesday, 20 August 2025

古早遊戲BGM巡遊(11): 夏のspecial

八月已經過一半多一點了。雖然按農曆來看大暑已經過去,但用暑假來看現在才差不多要進入高潮的部分。比如說,永無止境的八月就是17日開始的。不知道還有多少人記得這個梗呢?

如果要問我印象最深刻的「夏」歌,近十年的話我一定會回答君の知らない物語

「あれがデネブ、アルタイルベガ
君は指さす夏の大三角
覚えて空を見る--

やっと見つけた織姫様
だけどどこだろう彦星様
これじゃひとりぼっち--

每次這段都聽得鳥肌直豎要哭出來,不是有這種衝動而是淚不知不覺就滾下來了。夏季大三角和牛郎織女都是洋溢夏日氣息的元素,簡單幾句不但押韻又富含深意:我望向妳指給我看的夜空,看得見織女卻找不到牛郎。這樣織女不會孤獨嗎?那麼、妳又在哪裡呢?

……

咳咳。跑題了。君の知らない物語再好聽也總不會是遊戲BGM吧?

夏日、古早經典、遊戲BGM。

我想不少讀者已經猜出來了,那就是夏祭り。

原曲來自JITTERIN’JINN(1990),當時就斬下不錯的成績(oricon週間三位、全年80)。沒想到十年後的Whiteberry版本更進一步,不但全年排34,更讓她們登上紅白大舞台。對我來說接觸這首歌的契機當然不是當年的J-POP,而是太鼓收錄的版本。從二代開始每代都有收錄,是太鼓存續率最高、最經典的曲目之一。

夏祭り成為太鼓的招牌可說是渾然天成。太鼓本來就帶有熱鬧和祭典屬性,跟夏祭り完美重合。現實中的夏祭會有太鼓表演,那遊戲裡的太鼓也放上這一首也是天作之合。

你還記得那個太鼓的鬼譜嗎?那些沒有變化的ddd和kkk三連音,簡單的節奏不但切題,也是很好的登龍門。對我來說大部分音遊「上級者」門檻的概念都差不多,就是對十六分連打的應付能力。DDR的話是MAX300,太鼓的話鬼6星的夏祭り作為上級者的分界或許過易,作為引導成為上級者的前置卻非常合適。夏祭り的BPM142不算快也不算慢,拿來適應連打剛好。這首的物量也不少,能穩定地把那堆三連連打全部打過的話相信難一點、天國與地獄之流也不會構成任何障礙。我想,這也是為甚麼太鼓玩家普遍對夏祭り記憶如此深刻吧?

其實我一直都不知道太鼓版本的夏祭就是Whiteberry唱的,以為是南夢宮自己找人唱,現在比較熟番音遊公司運作以後才知道這根本不太可能。Whiteberry版的夏祭り的確比原版更青春熱情,在基本的樂團樂器以上還加上了太鼓等祭典元素,放進遊戲裡再適合不過。不過原來後來太鼓也把原版給收了進去,還做了個十星的裡鬼譜。譜面好不好看人,至少原版在遊戲裡聽起來也不錯,不知道是不是因為被後加了太鼓音效的緣故就是。

夏祭り作為「夏」歌經典最難得的是跨界而且持續的影響力。作為流行曲在1990和2000年分別火紅過一次,太鼓是在2001收錄,但太鼓作為遊戲冒起是2005出新機台和2003-2008分別在PS2/PSP/NDS出遊戲以後的事。到了2020年代夏祭り在太鼓那快要氾濫的歌單中或許沒那麼顯眼了,但這不代表歌曲的影響力消失掉--夏祭り作為野球應援曲就從來沒有停止過。

夏祭り和狙いうち都是常見的甲子園應援曲。比如佐賀商版的狙いうち和濟美的夏祭り都不錯。說起來習志野和大阪桐蔭的版本也不錯,可惜這兩家今年都沒進去正賽。不過沒關係,橫濱的也不錯?在高校野球以外在NPB同樣能發現夏祭り的身影,比如養樂多的チャンステーマ1。給球員應援到一半也有機會變奏成夏祭り,比如這個給山田哲人和巴冷天打氣的

所以說,夏祭り在1990、2000、2010甚至2020四個世紀的年輕人心裡都留下了印記。就算在今時今日,網絡世界上的大家也都還記得這一首夏季定番。從天月、96貓等nico歌手唱的版本那超強的播放量就能知一二。我私心也推Gero的版本就是。

夏祭り和君の知らない物語這對比起來其實很有趣。兩首都是夏日夜上的青春物語。一首是熱血外放的祭典、一首是寧靜夜空的思憶。既然兩者並無衝突,串起成一個短篇故事應該也不錯吧?感覺會是非常棒的東京夢華錄題材,不過最近有點忙,這件事就交給GPT好了。

不知道再過十年、二十年,下個世代的人還會不會接觸到君の知らない物語那優美的歌詞。不過夏祭り的話,我想還能在機廳、球場上流傳很久吧。

我倒是希望大家兩首都能記住就是。畢竟歌曲就像牛郎織女那般,你找不找他們都在那裡。可是找不著的話,大概總會有點空虛寂寞。妳說是吧?

Wednesday, 13 August 2025

Trig function higher order estimates: the limit of squeezing

Let us recall the classic result. What is the limit of $\frac{\sin x}{x}$ at $x=0$?

Without using calculus, we usually prove that by squeezing with the following geometric argument.
The area of triangle $CAB$ is $\frac{1}{2}\sin x$.
The area of sector $CAB$ is $\frac{x}{2}$.
The area of triangle $EAB$ is $\frac{1}{2}\tan x$.

Thus we have the inequality $\sin x \leq x \leq \tan x$ in an neighborhood around $x = 0$.
Rearranging gives $1\leq \frac{x}{\sin x} \leq \sec x$, but since $\sec x \to 1$ as $x\to 0$, squeezing gives $\lim _{x\to 0} \frac{x}{\sin x} = 1$.

That is essentially saying that the first order term of $\sin x$ is $1$ (while the constant term is zero).

Now the question is, how can we calculate higher order terms again without calculus?

For example, what is $\lim _{x\to 0} \frac{1-\cos x}{x^2}$?

With the abundance of trig identities, there are quite a number of possible approaches. Let us start with a pure algebraic one.

For the lower bound, note that
$1-\cos x \geq \frac{1}{2}(1-\cos ^2 x) = \frac{1}{2} \sin ^2 x$, so
$\frac{1-\cos x}{x^2} \geq \frac{1}{2} \frac{\sin ^2 x}{x^2} \to \frac{1}{2}$.

For the upper bound, we use that $\cos x \geq \sqrt{1-x^2}$ that
$\frac{1-\cos x}{x^2} \leq \frac{1 - \sqrt{1-x^2}}{x^2} \leq \frac{1}{1+\sqrt{1-x^2}} \to \frac{1}{2}$, so squeezing gives the answer.

But wait! Isn't it such a pity if we are dealing with a limit with actual geometric interpretation? After all, $1-\cos x$ is the length of segment $BD$. In that case, allow me to present my 'geometric' approach:

We start with the $\sin \frac{x}{2} \leq \frac{x}{2} \leq \tan \frac{x}{2}$, squaring gives $\sin ^2 \frac{x}{2} \leq \frac{x^2}{4} \leq \tan ^2 \frac{x}{2}$.

We use the identity $\sin ^2 \frac{x}{2} = \frac{1}{2} (1-\cos x)$ and $\tan ^2 \frac{x}{2} = \frac{1-\cos x}{\sin x}$, then the above becomes
$\frac{1-\cos x}{2} \leq \frac{x^2}{4} \leq \frac{(1-\cos x)^2}{\sin ^2 x}$
$2 \leq \frac{x^2}{1-\cos x} \leq \frac{4(1-\cos x)}{\sin ^2 x} = \frac{4}{1+\cos x}$.
Squeezing gives the same answer.

*

The next step is then to find the third order estimates. Or, when instincts kicks in, you would hope that this is what you need to generalize the whole thing. However, the deeper you look into the problem the bigger trouble you would find.

The use of quadratic related identities would fail instantly because you know it only give factors of (powers of) 2, which is not good if we are at higher orders. They are simply not good enough to prove the estimate of the next order. (But how did we managed to prove the second order estimate of $\cos x$? My rough guess is that the second order estimate of $\cos x$ is equivalent in some sense to the first order estimate of $\sin x$ although I am not so sure.)

For the other approach, you would wish that you can start with the formula $\sin ^n \frac{x}{n} \leq n^{-n}x^n \leq \tan ^n \frac{x}{n}$ and apply the multiple angle formula. I can see that being a possibility, albeit a very slim one.

The multiple angle formula can be written as $\sin x = T_n(\sin \frac{x}{n})$ where $T_n$ is the Chebyshev polynomial of the n-th order. The surprising thing is, equations in form of $T_n(x) + q = 0$ is solvable in radicals (!!!). That says, you can explicitly express $\sin \frac{x}{n}$ in a nested radicals in $\sin x$ solely and the estimation may proceed. Are you surprised that the name of Galois appears consecutively in my math entries by the way?

For $n = 3$, the triple angle formula induced equation $4x^3 - 3x + q = 0$ has the real solution $x = \frac{1}{2}(r + r^{-1})$ where $r = \sqrt[3]{\sqrt{q^2-1}-q}$. For our purpose we know $q = \sin x$ so that it even simplifies to $r = \sqrt[3]{i\cos x - \sin x}$. The root is real since $q \leq 1$, and we can simplify that to a single real expression in terms of $\sin x$ (left as exercise). BUT, how do we actually retrieve the term $x-\sin x$ from there? This is another big problem...

*

That does not mean we are hopeless against such limit though. 

The term $x- \sin x$ is still geometrically natural on the circle chart as the difference between length of arc $CB$ and the length of segment $CD$. Set midpoint of segment and arc $BC$ as $F$ and $G$ respectively. The arc length can then be bounded using the length $CB$ and $FG$ (note that $CB$ alone is not enough for the third order estimate!). Such approach works for third order estimates, but not any further when we can't find corresponding interpretation for higher order estimates on the chart.

Instead of trying hard with the trig circle, we just reside to the use the limit toolbox...as long as we know the limit exists, but that's easy right?

The existence can be done by continuity and MCT as long as it is bounded. First order bound gives $x-\sin x \leq \tan x - \sin x = \sin x (\sec x -1)$. Notice that $\lim _{x\to 0}\frac{\sec x - 1}{x^2} = \frac{1}{2}$ (why?), we conclude that $x-\sin x \leq (\frac{1}{2}+\varepsilon) x^3$ in a neighbourhood of $x = 0$. 

With the existence of limit being shown, we have all the tricks in our sleeves. Here are two neat solutions I like. Set $L = \lim _{x\to 0} \frac{x-\sin x}{x^3}$.

Solution 1. 
By triple angle formula:
$x-\sin x = x - 3\sin \frac{x}{3} + 4\sin ^3 \frac{x}{3}$
$= \frac{1}{9}(\frac{(x/3) - \sin (x/3)}{(x/3)^3}) + \frac{4}{27} \left ( \frac{\sin (x/3)}{x/3} \right )^3$
$\to \frac{1}{9}L + \frac{4}{27}$

which gives us $L = \frac{1}{6}$.

Solution 2. 
Note that $L$ is also the limit of $\frac{2x - \sin 2x}{8x^3}$, a linear combination of limits shows that
$4L - L = 3L = \lim_{x\to 0}\frac{x - (1/2)\sin 2x - x + \sin x}{x^3} = \lim_{x\to 0}\frac{2\sin x - \sin 2x}{2x^3}$.

Now $\frac{2\sin x - \sin 2x}{2x^3} = \frac{\sin x}{x} \cdot \frac{1-\cos x}{x^2} \to \frac{1}{2}$, hence $L = \frac{1}{6}$.

It turns out that squeezing is trying to prove existence and value in one go which makes things strictly harder, the need of monotonic estimates is really hard to deal with as well. In the above approach, we only need $x - \sin x = \Theta (x^3)$, in contrast to the bound of $\frac{1}{6}x^3 + O(x^4)$ for squeezing. It is also note worthy that n-th order estimate always gives a (n+2)-th order bound (i.e. generalization is possible) because if the n-th coefficient matches, we can argue the (n+1)-th order coefficient is zero by odd parity.

We may need to admit that squeezing theorem has its limit(!) after all.

***

Here is a bonus bound as suggested by Grok4 when I tested its capabilities, and it claimed that this is an 'elementary approach'. I asked it to prove $x - \sin x \leq \frac{1}{2}x^3$ and it returns as below:

Note Euler's infinite product $\sin x = x \prod (1 - \frac{x^2}{n^2 \pi ^2})$. Manipulating the formula gives
$\sin x = x \cdot \prod (1 - \frac{x^2}{n^2 \pi ^2}) \geq x(1 - \sum \frac{x^2}{n^2\pi ^2}) = x - \zeta(2) \frac{x^3}{\pi ^2}$,
and the claim follows since $\zeta (2) = \frac{\pi ^2}{6}$.

Beautiful? Yes. Elementary? Ummm...what's the difference between using infinite product and using Taylor series?

That isn't even the funniest part. In reality it failed to retrieve the tight constant $\frac{1}{6}$. Instead it uses the estimation $\sum \frac{1}{n^2} \leq 1 + \sum \frac{1}{n(n+1)} \leq 2$, so $\sin x \geq x - \frac{2}{\pi ^2}\cdot x^3$, where $\frac{2}{\pi ^2}\approx 0.2026$.

I asked is it possible to prove the inequality with the tight constant $\frac{1}{6}$ by elementary means then? It searched and thought seriously for a while, then it said no.

Saturday, 2 August 2025

被青梅竹馬抓來(略) (14):深夜巡邏看似很安全,實際上一點也不危險

Character design: @kuonyuu, Illust: @あん穏 commissioned by forretrio. Skeb
Editing and re-posting are prohibited // 無断転載、無断使用禁止です

波恩這個城市超出了少年的想象。

他認知中的波恩是邊境城市,有完整的冒險產業,有一定的貿易。因為冒險者泛濫所以治安不怎樣,貿易也是在刀鋒上探戈的高風險行當。但他待了幾天後發現波恩非常安全,治安問題被限縮到一個冒險者為主的區域裡面。城區設置了大量派出所,衛兵的主要工作也是維持治安而不是在商家身上榨取金錢。這都是因為波恩作為貿易要點的產值實際上不比冒險的產值低,商人擁有很高的話語權。治安是由商人和統治者共同維持的,換來的是城市的持續成長。波恩通往王都最近的路線不是全年隨意通行是有點麻煩,但這裡已經發展到可以沿邊境發展道路把國內貿易網絡推出去的程度。

這給少年帶來了很大的震撼。不是說王都就是最繁榮的都市嗎?這片王權鞭長莫及、沒甚麼人看上的邊陲之地,活力反而超過了很多地方。不論是衛兵小販還是各種技術人才,只要努力就能為自己掙得容身之地,甚至還有餘力爬上更高的階級。

在王都這些機會都被一群人壟斷了。

比如說衛兵。王都的衛兵當然也不會隨便壓榨平民,但不少衛兵空缺都是留給有關係的人來當的。在治安系統裡平穩渡日就能慢慢升職,反正天子腳下不可能發生甚麼大問題。

又或者少年只花了兩天就找到的書記工作。書記官絕對是個肥差,光是經手大量資訊這點就代表著一定權力。在王都很多這種職缺都是內定的,唯一例外大概是魔法學園出來的高材生。

又或者商會裡書記會計之類的職位也是個肥差。經手的金錢是如此之多,只要有心隨便都能撈到油水。在王都這類職位都留給親信或者信得過的隨從,但在這裡似乎只在意對方是否有能力應付工作。

現在叫玖里的少年還記得自己要保持低調沒有找任何冒險或者魔法相關工作,他找了一份為商會處理內務的書記工作。在魔法學園接觸過一些相關知識的他比起一般人好上太多,但也沒好到被懷疑的程度。商會沒有很大,剛好可以請一個書記在裡面幫忙,這樣也不需要太多交流。少年說自己從小就是貴族身邊的侍從,因為主上家道中落被遣散才流浪到這裡謀生。這也是少女為他安排身份的一部分,反正少年舉止剛好有一點貴族風範,這種身份正好適合。對方完全沒有懷疑就要了他,還說表現好的話會把培養他為商會的一分子。

對少年來說更重要的是這份工作作息定時,只要把手上的活幹完就能下班。前一個月他還能忍住下了班回家自己訓練,後來就忍不住跑去冒險者公會接委托了。他都選可以單獨完成、不易撞見別人的工作,比如清理下水道消滅老鼠之類。公會感謝他還來不及,因為這種工作一直都沒人要接。少年的想法是有東西讓他練手就好,可是他發現下水道沾上那身惡臭連魔法也洗不清,他只好忍痛放棄。

有甚麼比實戰更吸引人呢?不過他白天還要工作,只能參加晚上組隊在城外狩獵魔物之類的定時巡邏。每天下班回來趕緊睡一會,深夜才是工作的時間。比起白天穿著整齊的裝束工作,他在晚上改頭換面才能讓外人認不出來。他沒有選擇法師袍而是更像盜賊的短斗篷加緊身裝連口罩,雖然接委託時還是免不了要申報自己為魔法師。

「我想申請加入深夜巡邏。」這種巡邏主要是應付魔物,可疑的人不在他們的檢查範圍裡面,這些由城市的防衛力量負責。

接待員接過他的卡片:「玖里先生……?現在不接清理下水道的委託了嗎?」願意接髒活的人很少,偏偏日常委託的完成比例是接待員的工作指標之一。她可不希望放過這位願意接活的少年。

「我……想我明白為何大家都不願意接這種工作。」

「真是可惜~下個月上面會檢討這些工作的酬勞。清理下水道因為一直沒人做,酬勞很可能會升上去。到時如果玖里先生能幫上忙的話就好了~」她露出職業的笑容。

「至少現在我想試試別的,畢竟錢比較多嘛。」

「也對啦……」接待員一臉遺憾,但還是拿出相關的紀錄:「深夜巡邏的空缺並不多,有空缺的那幾天我先幫你排個班吧。可是我們沒有玖里先生在下水道委託以外的活動紀錄,未必能達到巡邏隊的要求。你介意我們對你測試一下嗎?」

「可以。不過巡邏隊的要求很高嗎?看報酬感覺上還是簡單的工作啊。」

「啊、玖里先生你誤會了!加入巡邏的要求沒有很高,只要有基本戰鬥力和沒有犯罪記錄的的人都可以參加。清理下水道當然需要一點自保能力,我們完全不懷疑你能勝任巡邏的工作。只是在下水道清理掉的魔物不需要提交證明也沒有紀錄在案,我們沒辦法在官方紀錄中確認你的能力而已。測試真的非常簡單,絕對不會為難你的!」

「呃,好吧。」

接待員從櫃台後方跑出來,一下就揪出正在大堂喝酒的某位男子。男子不甘不願地跟著接待員走過來:「這就是要測試的人?」

「嗯。玖里先生之前一直在接清理下水道的工作,但我們沒有他戰鬥能力的證明。你可以幫忙測試一下嗎。」

男子走到少年前面,上下打量了幾下迅速得出結論:「嗯不錯,我覺得可以了。」

「啊??你又來了!」男子一臉想快點回去喝酒的態度讓接待員十分不滿:「拜託認真幫玖里先生測試一下好嗎!!」

男子自言自語地講了一堆話才撓撓頭答應:「明明一眼就能確認的東西……唉、你跟我來吧。」少年尾隨男子從公會的訓練場地去。雖然男子渾身酒氣,步伐卻絲毫不見凌亂。

偌大的訓練場地在晚上空溜溜的沒幾個人使用。大堂還是熱鬧是因為有晚上才能進行的委託,但晚上才訓練的人幾乎沒有。少數獨自訓練的人看了二人一下便沒有再理會他們。

「看你體格就知道平時訓練有素。這還用測試嗎?好麻煩啊……說起來你職業是?」

「會魔法的斥候。」

「很好啊,很適合參與深夜巡邏。會甚麼魔法?」

「風魔法為主。」

「別的就不用測了,我只想看你的風魔法。」男子從地上撿起一把石子:「我現在把這些石子丟出去,你就站這裡用魔法攻擊那些石子可以嗎?」

「嗯。」少年抬手向著男子所指的方向,淡綠色的光芒在他手上浮現。

「那我來了哦。」男子第一顆石子從下往上用拋的,並沒有拋出很遠。這跟少年在學園練手的移動靶子有點像。一發風刃發過去乾淨俐落地把石子切成兩半。第二顆石子的軌跡也差不多,同樣輕易被風刃切開。

「喔,不錯啊。」男子改為正手投擲的姿勢,石子被丟得又高又遠。不過這對少年來說還是沒甚麼難度,滯空時間足夠讓他算出石子的軌跡。這次的風刃沒有乾淨地切開石頭而是把石頭擊碎了。

「喔喔。」少年沒留意到身後的男子向後踏穩、右手向後拉弓地丟出第四顆石子。石子以驚人的速度向前平飛。在看到石子的當下少年就發現自己眼睛已經沒有時間跟上,但身體還是本能地向前來了一發風刃。風刃比人全力丟的石頭還要快,它居然成功追上石頭並把石頭的一角砍掉。被切開的石頭餘勢不減徑直撞上牆壁,在這空蕩的訓練場出發出兩人能聽到的悶響。

完蛋。會不會太張揚了?這是少年的第一反應。他連忙說道:「啊……啊哈哈,居然被我蒙中了。」他一轉身發現男子以銳利的目光盯著他,那氣場完全不像喝了一整晚的人。這傢伙會不會開始追究我的出身?把我當成臥底嗎?還是--

男子爆發出豪邁的笑聲,仿彿剛剛只是少年的錯覺:「很有一套嘛!難怪你都接清理下水道的委託。那邊的魔物沒有很強就是躲得快逃得快,不過再快遇上你也逃不掉呀。」

「還、還要測試其他東西嗎?」少年只想盡快了結這測試避免曝露太多。

男子擺擺手轉頭就走,頭也不回地離開訓練場:「不用了,其他的等你進隊再看也不遲。你自己跟接待員說吧。」

謎一般的男子就這樣批准了少年加入深夜巡邏。接待員十分善心地把每一個有空缺的晚上都給他排了上去。少年對男子的身份很有興趣,但接待員沒有要鬆口的意思。男子一直都只在大堂的喝酒區出沒,完全不像是有官方身份的人。其實如果少年敢買一點好酒跑過去搭訕的話說不定很簡單就能要到答案,但年齡不夠又過不了心理關口的他始終只敢在遠處看上兩眼。沒多久少年就忘了這個想法,他覺得繼續混下去的話自己早晚會知道答案的。

深夜巡邏是少年第一次接的團體任務,即使在王都他也從來只接可以獨自完成的委託。一方面是因為他在學園裡沒多少可以組隊的朋友,另一方面也源自他對學園提供的冒險訓練的感受--太低能了。

學園安排的地下城幾乎沒有突發事件可言。路線和會遇上的魔物之類的資訊都已經完整地提供了給學生們,魔物的強度對比魔法科學生的能力而言毫無威脅,比起冒險更像是郊遊。這種安排對長期面對高強度操練的魔法科學生來說十分奇怪。沒有讀滿三年的少年不知道高年級魔法科的冒險訓練是否還是如此無聊,但他知道隔壁冒險科的訓練就要難上許多,這樣出來的學生才會受到那些大公會的青睞。

很久以後少年才知道這種安排的原因--不管事前安排有多好、看上去有多簡單,地下城永遠伴隨著風險。萬一是哪位大人的公子掛彩呢?正是發生過意外,學園在這方面變得意外地保守。在大人們默許的情況下魔法科的冒險訓練逐漸變成了現在的樣子。

對當時的少年而言最直接的影響就是他完全不信任學園給他的訓練,他甚至不敢進入王都裡那些稍有難度的地下城。他不畏懼任何面對面的戰鬥,但地下城那危機四伏的感覺讓他十分不舒服,只要稍有豫疑他就情願逃走。這種心態使他一直不想參與組隊,直到他在新的地方才敢放開手腳。不用進地下城,只要像平時地應付魔物就好,應該沒問題的吧?少年如此告訴自己。

從這時開始他才開始願意跟別人組隊冒險。

小隊的主要任務是留意城市外圍的魔物出沒痕跡。能當場揪出魔物幹掉當然很好,但晚上要憑空搜出擊殺一隻魔物是非常困難且低效的行為。只要找到足夠痕跡整理成報告交上去,冒險者公會自然有人來處理。本來這就是工作的主要內容,但在庫里斯不小心兩次遙距鎖定魔物後小隊迅速把這些拋諸腦後進入狩獵模式。不殺魔物本來就是因為晚上不好找,但已經鎖定了的話就另作別論了。加上魔物也能賣錢,誰又會拒絕這天上掉下來的餡餅呢?

作為小隊裡的新人,其他隊員本來沒有甚麼期望。但是玖里的用實際表現打動了隊員們,於是他迅速融入到隊伍裡面。隊員們不住提起了巡邏工作的要點:怎樣分辨出魔物和人的痕跡啦、常見的魔物種類、合作應付魔物的方法等等。這幫戰鬥力未必很強的隊員們每天都給少年灌輸著新的概念,縝密程度遠超學園上的課,就連冒險科也沒法教得如此詳細。少年覺得這些人絕對值得更好的待遇,可惜到最後決定這點的還是任務難度,如此穩定的工作是賺不到甚麼錢的。

「我覺得你們比很多冒險者都要厲害啊。那堆跑地下城的新手連魔物的基本資料都沒記全就往裡面跑了。」某天少年被眾人拉到酒場裡去,這是他的開場白。

「哎呀你這小子可真會說。有你在我們現在每晚喝完酒還有餘錢回去交差呢!來來來多吃點,今天晚上我來付帳。」

所以平時巡邏回來領的工錢都是喝光了嗎,少年心裡吐糟道。但他沒有客氣,這幾天都能獵到魔物回來都是他的功勞。這種接近城市的地方很難有甚麼危險的魔物,這幫隊員們一個包抄就能把它拿下,甚至不用少年出手。魔物換來的報酬平分下來一點都不差,也難怪巡邏隊員對此反應如此大。

酒過三巡後少年脫嘴而出:「你們對魔物習性如此熟悉的話就不考慮換點別的冒險工作嗎?我看那些沒怎樣準備的新人也能在地下城賺錢,由你們也去地下城的話報酬總比巡邏好吧?」

本來熱烈的氣氛忽然凍結了下來,幾個隊員看著自己的啤酒杯默然不語。數秒後最資深的大叔開口:「唉…小哥你還年輕。地下城再簡單,風險也比這種巡邏工作要高。你看那些進地下城的新人,在一年後還留在這行的有多少,五年十年呢?我們都有家室了,戰力也很難再進一步……這種工作已經不錯了呀。」

「不、不好意思,我不該這樣問的。」

「這麼客氣幹嘛。我們才想問你,以你的身手幹嘛要接這種工作?」幾個隊員立刻跟著起哄。

「我……其實白天有正職,想賺點外快只能在晚上找這種時間固定的活。」

隊員們把少年的正職當成了保鑣或者魔法師之類的魔法相關職業,討論話題開始偏移到他們各種大吹大擂上面。他們大概已經忘了白天幹這種工作的人根本就看不起深夜巡邏這點報酬。

這些隊員們安於這份工作,但少年知道他們對冒險的理解絕對能處理比起巡邏更複雜的狀況。他們可以在這裡幹到退休,而對少年來說巡邏只是他的踏腳石,他早晚要回到那個冒險的世界。屆時他腦裡裝著的是學園裡面教的三腳貓功夫還是這些老油條的經驗累積分別可就大了。這麼好的機會就在眼前,少年無論如何都希望從他們身上學到更多。

接下來的三個月裡少年一直跟著他們巡邏。前一個月還能獵到不少魔物,到了後面連魔物的影子都看不見。大概他們已經把定居這一帶的魔物都獵光,剩下的都嚇到躲起來了吧?其他隊員們倒也不太在意獎金因此下降,至少工作變得輕鬆多了。城市的魔物侵害報告也在下降,他們可以自豪地說這是小隊的功勞。他們也不擔心這個崗位會因此被砍掉,因為少年肯定不會一直待在這裡。

對少年來說這是難得的學習機會。這當然不是戰力上的進步,但誰說冒險只有戰鬥呢?少年覺得現在自己索敵和探路能力都上升了一大截,目光所及任何痕跡都難以逃過少年的認知。他操縱氣流作為額外的感知手段在這段時間也有機會一直實踐,這也是他可以一直鎖定獵物的必殺技。這種技能不用多想也知道在冒險中有多實用。

所以……

明明就有完全不危險但也能學到東西的任務,為甚麼學園連這些東西都不願意碰啊??

*

一份厚厚的文件「啪」一聲放到庫里斯面前,標題就是一年級魔法科去地下城實習的計劃。他快速看瞄過文件的內容:首先是目前的教學進度,然後是為了進地下城所需要準備。學生需要兩個月以上的密集訓練,而且是冒險課和魔法課同時進行的訓練。蓋伊負責探險的知識和技巧,本來也屬於冒險課的實戰訓練則丟到庫里斯手上。在進入選定的地下城以前有兩次很像以往地下城「郊遊」的練習機會,第三次才會來真的。

整個計劃都圍繞降低風險而設計。事前的學習和操練是一部分,在地下此裡面的安排也同樣重要。蓋伊的方案是把探險隊伍進一步打散成五人一隊,而且改變過去讓學生自由探險的政策,每次出入都由蓋伊或庫里斯親自伴隨。老師的主要角色只限於評核和救急,剩下都由學生們獨力完成任務。

文件剩下的部分是選定地下城的資料。這是另一個離王都不遠、已被完全探明的地下城。由冒險者公會管理,人氣不高但進入要預先登記。到時可以學園的名義交涉暫時不開放預約,這樣在裡面遇到人為風險的機會便會降低。任務是假設有人在地下城某處受傷被丟下,隊伍前往定點搜索並回收傷者。文件標註了三個樓層對應三種難度,老師可以按學生隊伍的能力來決定任務難度。

庫里斯看了一遍又一遍,蓋伊終於不耐煩問:「覺得怎樣啊?」

「……你們大公會都是這樣寫計劃書的嗎?」

「才不會。『銀雪兔』底層隊伍的競爭是很殘酷的,還要手把手教的人我們才不會看得上眼。有些天才值得我們破格拉一把,但直接把他們丟去高級隊伍還比較快。」

「那我知道了,你一定是翻出了很久以前學園的地下城企劃作參考吧!」

「我怎可能有這種東西,很多都是動腦想出來的好不好。你也給我仔細好好看有沒有要更正的地方。別忘了這種大企劃肯定要得到學園長的首肯,這個難度可不是開玩笑的。」

庫里斯頭頂冒出問號:「有很難嗎?我看他沒對我的課綱更動作出甚麼表示。」

蓋伊嘆氣:「這是因為你的教學逃不出他的掌控啊。要是他某天跟你說你這樣教不行要改回去,你覺得你有拒絕的權利嗎?」

「……」庫里斯這時才想起華萊里安絕對不是對他更改課綱毫無表示。

「若是你帶學生去地下城出了甚麼意外他不但控制不了,追究起來他也逃不掉。他怎可能讓這種風險出現呢?拒絕你是最自然的選擇。只有讓他感到安心而且不可能背鍋的情況下我們的企劃才有一點點通過的可能。」

「嗯……如果我們讓學生簽名自願參與呢?這樣追責也追不到華萊里安頭上。」

「這樣不就表示這趟冒險的確很危險嗎。退一步來說就算學生們都簽了下去,真出事了你能承受大貴族的怒火嗎?」

「的確不能。」

「你現在明白我為何要花了大功夫把細節全都寫上去了吧。現在想來只為了跟你交個手和幫朋友跑個簡單任務就跳進了這個大坑實屬不值,所以我怎也得把你拉進來,這樣我心理會平衡一點。」蓋伊突然露出微笑:「跟學園長的交涉當然由你這個魔法科老師來做,我已經幫你足夠多了。戰鬥訓練也要你自己來,別跟我說你沒時間教,想要拔苗助長總要付出代價吧?」

庫里斯面有難色:「我明白實戰訓練很重要。但是在魔法課裡加插兩個月的戰鬥訓練先不說有沒有這樣的時間,這已經是花時間在跟本來魔法課無關的內容上了。怎麼想都不可能通過啊?」

蓋伊聳肩:「擬定企劃、給他們速成一下加上帶隊,我能做的都已經做了,剩下的都是你才能解決的問題。嘛,你回去一邊批改卷子一邊想想有沒有解決方法吧。」說罷他把企劃書拍到庫里斯的卷子上面。

「……我會的,」庫里斯思考良久後拿起沙漏和答題紙,明明只是多了一份企劃書他卻感到手上這疊紙變得沉重很多:「等著我的好消息吧。」

***

我一直很想討論冒險體系的建構。冒險產業作為城市支柱之一,冒險生態就是城市風格的縮寫,因此討論冒險體系其實就是討論城市本身。

比如說王都和波恩是兩個截然不同的城市。王都權力集中而且會明確跟隨規則運行,而波恩更像是放任的自治。很多人會想當然覺得前者「比較好」--在機遇、富裕程度、宜居程度之類的指標上--事實上兩者間的優劣完全因人而異。像學園的學生只要按部就班畢業肯定就能在王都找到不錯的工作,魔法科的畢業生還可以一隻腳踏進精英圈子裡面。王都提供了這樣的機會,作為代價是不能打破那些規矩,比如權力的上下關係。波恩則更接近實力至上,冒險者公會連當個巡邏都要確認實力,而庫里斯在巡邏隊上展現實力後則迅速得到大家的尊重。雖然他覺得商會請人都很隨意,事實上你工作的表現人家都放在眼內,真的沒法勝任工作的話就會被無情掃出去。

當然,在波恩如魚得水的大部分都是像他這種實力過硬的人。而那些不經培訓就想進地下城的新人如同巡邏隊所說每年都要折損一批,只有少數人能一直幹下去。如果這些人在王都呢?幾乎進入任何地下城都會被攔下來,只能從最簡單的任務做起。他們生命得到了保障,但也失去了一條上升的捷徑。

這篇前半都是他的回憶,是他看見企劃時的感嘆。順帶一提,深夜巡邏真的不是甚麼高難度的工作。靠近城市的魔物的數量和強度都偏低,而且真對居民產生危害的話一定會通報出來根本不需要巡邏隊。之所以還要深夜巡邏其實就是開個職缺養著這幫有經驗但是已經打不動的冒險者,工資夠低而且真有點用所以這個小隊就被留了下來。在玖里加入以前,小隊每個晚上都能收到若干魔物報告但很多都是誤報,每一兩天就能發現魔物的痕跡,但可能每個月才會碰上一兩頭不長眼的魔物。從數字上看不多,但一頭魔物也是一頭魔物,而且深夜是防備最薄弱的時間,花這點小錢還是值得。

回到當下,庫里斯似乎很驚訝蓋伊會拿出這樣的企劃和看得出要通過企劃的要點。這一點都不意外,也就這笨蛋還沒習慣王都的思考模式吧。能在王都的大公會裡混到相當層次再跳到魔法學園裡教書,怎可能半點政治觸覺都沒有呢?從這份相當進取的企劃中可以看出他還是有半顆老夫聊發少年狂的心,他想看看庫里斯有沒有辦法推動這個企劃,或者更進一步讓魔法科的冒險訓練回到正常的狀態。

正所謂春風若有憐花意,可否許我再少年?這一句也送給各位。

最後是插圖時間,這次是あん穏老師的樹下小睡圖。想像一下被學生吵醒的樣子,到底會是溫柔的教師眼神,還是帶起床氣的防衛性眼神呢?

Tuesday, 29 July 2025

28/7/2025: Sixth form maths/Quintic dreams/Frontiermath

The blog is full of my random thoughts. 

The category of random thoughts contributes to the fifth largest categories among tagged entries, after "diary", "notes", "maths" and "works". Most of them were in Chinese though.

And today I come up with something different: three math related random thoughts in a single entry.

This is new in the sense that all "math diary" in the past are more like "math but too casual" that were still focused on a single topic. This is also new because it's 3 math-related entries in a row...

*

I recently bought another sixth form "textbook" from an antique store. Titled "Polynomials and equations" and claimed "part of the chapters applicable for HKALE or equivalent examinations". This is nothing special: polynomials is an essential part in the curriculum with questions commonly on binomial sums and Vieta applications.

I bought the book at the price of half a cup of coffee, made myself a proper cup of coffee and started diving in...

- Introduction...starts with the notation $R[x]$ and $C[x]$.
- Factorization...gcd and lcm, then the Euclidean algorithm, unique factorization and FToA.
- Solving equations...then start talking about the meaning of discriminant in these solutions together with the insolvability of quintic equations.
- Integral solutions...some number theory, then Eisenstein without warning.
- Derivatives...Taylor and approximating continuous functions, IVT, Rolle.
- Root bounding and separation...approximates, Strum and Fourier(surprise!)...

Oh yeah, the "new math" style old math textbook.

The context was a bit different though. The book I bought was published in 1992, and indeed part of the chapters fitted the HKALE pure maths syllabus and exam depth adequately. The pure math exam was hard more because HKALE itself was designed to be an ultimate challenge to filter true elite to enter university.

Should it be a true "new math" style book, it has to be much earlier like in the 1970s or 1980s, it would also be covering topics straight at university level abstractness. I have another true "new math" era "sixth form" textbook with the title "group theory" that followed M.Artin's line all the way up to similarity. Can you imagine average sixth form students doing that?

Nonetheless the bridging between high school and university has always been an intriguing topic for discussion especially regions adopting the sixth form/matriculation system. Students at that level are matured enough to take another step above the cert level but not quite ready for university. What would you teach them, and what would you examine?

It always feel weird to me that geometry has been playing the vital role in most A-level or even high school level syllabuses across the globe. Coordinate geometry on conics, vector geometry, 3D vector calculus, parametric equations, geometry on complex plane -- do we really need them? Are they really useful other than serving the purpose of filtering students who can't handle messiness?

These geometry topics are almost never used in universities. You will use vector but they are not for solving Euclidean geometry problems. You will see them in linear algebra or calculus II with completely different intents. Conics are almost never used except for optics which is extremely niche and still look simpler than questions you will encounter in A-level exams. Complex geometry is beautiful but you will only study complex analysis in undergrad, not complex geometry.

There are so many misc topics you can fill into the roster instead. What about functions and relations? Injective and surjective functions? Equivalence relations? Group theory from matrices? Inequalities, epsilon-N and epsilon-delta?

...

Youtube forwarded me a video on quintic insolvability without Galois on the same day. Frankly this is what motivated me to write something, not the sixth form textbook.

The video was about Arnold's proof, who managed to open the field of topological Galois theory from this result. The concept of "multivalued pullback" is somewhat unexpected yet so beautiful to understand. 

When I first read M.Artin's algebra on branched coverings, it was too abstract for me. I simply jotted down and didn't understand a word of it. It wasn't even in the exam so I never came back to the topic until I took algebraic geometry course much, much later. Even so, it was never my focus.

On the other hand, the idea of travelling from a branch to another continuously is something that is much common. Winding is everywhere in geometry, topology and analysis. The moment they showed the loop (the projections of the infinite branched sheets onto complex plane) it's like a spark in my brain and everything started to come together.

The rest is all about bridging between loop commutators and roots permutation, but they looks so complicated even as presented in those modified sources. Here is the logic I would rather present instead:

- Given any solution formula for a given degree of polynomial equation, it should be invariant upon transversal along any loop based at solution point.
- In particular, it must be invariant to the commutators of loops, the commutators of commutators,... and so on because they are all loops.
- The key result is that suppose the minimal (least number of nested roots) formulae that are invariant to two loops contain $k$ nested loops and that the two loops do not commute, then the minimal formula that is invariant to the two loops and its commutator requires at least $k+1$ nested roots (!!!).
- Thus, the existence of the formula relies on the requirement that commutator of commutators eventually becomes trivial. In other words, we want the commutator group chain to terminate in finite number of steps.
- Quadratic case: the commutators of $S_2$ is trivial, hence there is just 1 square root.
- Cubic case: the commutator group chain is $S_3, A_3, \left\{ e\right\}$, hence two nested roots.
- Quartic case: the commutator group chain is $S_4, A_4, V, \left\{ e \right\}$ so it works too.
- Quintic case? The commutator group is stuck at $A_5$ because it's damn simple!

In the first half the proof may look completely new and creative, but once you saw the subgroup chains it reduces to "oh it's the damn old $A_5$ again...".

The video avoided saying $A_5$ being simple directly. Instead it said commutator (sub)group generates the whole permutation group which means any finite nested root doesn't work. 

Abel's proof (for him proving the result before Galois) also avoided the use of $A_5$. He used the language of algebraic independence to show that no further field extension is possible after the quadratic extension (equivalently from $S_5$ to $A_5$), just without all modern tools.

Both approaches avoided the use of $A_5$ although they are simply equivalent in the algebraic sense. The commutator group is in fact the minimal normal subgroup such that the quotient is Abelian. Since $A_5$ is simple, the only normal subgroup is the trivial group or itself, but the quotient upon trivial group is not Abelian, so the commutator group got stuck at $A_5$. Abel's approach is merely the elementary way of showing that there is no transitive field extension (by prime characteristic each step) to $S_5$ because $A_5$ is simple.

That makes me wondering what counts as "Galois"? The use of Galois theory, or even the fact that $A_5$ is simple? Even in modern algebraic sense, we could have avoided the use of Galois theory simply by using the language of field extension. It could have been much easier than Abel's proof too. Does that count as non-Galois proof?

I have no idea.

But one thing for sure: I would be extremely impressed if someone proved irresolvability without using any algebraic structure related to $A_5$.

Anyway, it's a good math video almost at 3B1B level, a hidden treasure that is definitely worth a look.

Some other great references:

*

Speaking of Galois theory I've got one more thing to say: the math LLM benchmarks.

Forget about testing against AMC or AIME. Forget about testing against IMO or Putnam problems. We are now straight into the most advanced problems we can scramble out of our garage.

Previously I have been looking into the HLE (humanity's last exam) benchmarks as they aim to gather top questions from all subjects where math plays a big part of it. However, the mix between math and other subjects means that it is very hard to evaluate how good at math LLMs had became. There are also questions that are pure travia or multiple choice questions that aren't foul proof and hardly represent any meaningful results.

That is, until my friend told me the existence of FrontierMath.

I really like the fact that cover a wide range of breadth while keeping everything hard and foul proof. Top tier questions are only answered using frontier research results and are absolutely into the most niche bit of mathematics at the frontier. I really wonder how did the LLMs managed even to answer any single one of them...we can learn much more from what they managed to answer instead of what they can't for now.

Can I give any prediction on their progress of solving these questions? Not really. I still think they will be stopped by these questions for a long time but I might as well give an opposite answer by the end of 2025...

Sunday, 20 July 2025

IMO 2025 and LLM's misleading claim on gold medals

Hello, time for IMO again!

This is one of the IMO hosted that is closest to my base of New Zealand, but I am not a participant for sure and I am not a team staff anyway, so nothing other than the questions themselves. So let's dive into the questions right now, shall we?

As usual, this is not a full attempt with the proper time limit. This is my instinctive brainstorming and observations, together with comments when I check the discussions.

Q1. Do you call that combinatorics? Or algebra? I think it has bits of everything yet so simple that makes it hard to classify.

For $n=3$ that is pretty simple where you come up with the possibility of $k = 0,1,3$. But what about the general $n$? That must be by induction for sure, and it would be nice if we can reduce the $n$.

My instinct is an idea similar to the reciprocity proof: how many lattice points a line would cross given the first crossed point and the rational slope? That is simply the denominator of the slope at simplest form. That says, sunny lines are inefficient in covering the points whose size grows quadratically. However, this approach is so vague and leaves the cover set in a mess. Thus I changed the covering focus to the boundary instead.

To be more precise, we focus on the colinear lattices $(1,b)$. Two cases to consider: if we include the line $x=1$ that passes through all those lattices we can reduce to lower $n$. If not, that is $n$ distinct lines passing through the $n$ lattices. For that case we ask the question: what lines cover the lattices $(b,n+1-b)$? If they are covered by the line $x+y = n+1$ then we reduce to lower $n$, otherwise again they are again covered by $n$ distinct lines.

Now this is a matching between the $(n-1)$ lattices $(1,1),...,(1,n-1)$ and $(2,n-1),...,(n,1)$ so that it covers all lattices not covered by the line connected to $(1,n)$. We focus on the lattices $(2,1),...,(n-1,1)$. If the line connecting $(1,1)$ does not connect $(n,1)$, all such $(n-2)$ lattices are not covered. They can't be covered by any other line connecting $(1,2),...,(1,n-1)$ either because such line won't be able to connect a lattice on $x+y=n$ then. Thus either $n=3$ or we force the line $y=1$. 

From the above we established that we can always reduce $n$ by arguing at least one of the lines would be the edge of the outermost triangle, so we can reduce $n$ until $n=3$ where we already know the answer.

I thought this is a nice argument until I checked AoPS.

oh.

OOOOHHHHHHH.

Point counting around the outermost triangle with inequality $2n \leq 3n-3$ is much better.

Q2. Geometry outside of Q1/4 is hopeless for me as usual. Interestingly if I had 4.5 hours I can actually hardbash this geometry question by co-geom. It gets even more feasible with the fact that I can actually do Q3 timely this year. It is also simple enough in the sense you do not need to use vector calculus or the ratio gimmick stuff.

Q3. Surprisingly easy really. When you see statements in the type of "$f(a)$ satisfies proposition $P(a,b)$ for all $a,b$" you know this is an extremely powerful statement to be exploited by picking the right $b$. It also allows us to approach by thinking about the factorization of $f(a)$.

Believe or not, these two approaches are all you need for this problem.

- For prime $p$ we know that $f(p)\mid p^p$ so $f(p)$ is power of primes. 
- For $f(x)\neq x$ (we know the identity function does not satisfy the functional equation), $f(p) \mid x^p - f(x)^{f(p)}$ but $x^p -f(x)^{p^c} \equiv x-f(x)$ mod $p$ so $p\mid f(x)-x$ which is impossible for large enough $p$. Thus $f(p) = 1$ for all large enough primes.
- Suppose $a$ odd and $p\mid f(a)$ for odd prime $p$. Let $q$ be large enough so that $f(q) = 1$ and is primitive mod $p$. Then $f(a) \mid q^a-1$, but since $q$ is primitive we know $p-1\mid a$ which is impossible since $p-1$ is even and $a$ is odd. Checking $f(a) \mid a^a - f(a)^{f(a)}$ shows that $f(a)$ is odd as well. Thus $f(a) = 1$.
- Suppose $p\mid f(a)$ for prime $p$, then $p\mid f(a)\mid p^a-1$ forces $p=2$, so $f$ maps to powers of 2. (Notice the order, we need the previous claim so that $f(p) = 1$ for all odd primes.
- It is all prime power ($v_2(a)$) chasing and construction of a tight example at the end.

Every step is so natural: divisibility leads to prime behavior, odd behavior then extend to the whole function. The only slightly less natural tool here would be the Dirichlet's theorem but I guess this is well known right? 

Anyway, one of the very few accessible Q3 to me.

Q4. Strangely I find this one causing me more trouble than Q3, due to the troublesome case by case argument. The first part is easy -- the only three distinct unit fractions the sums to 1 is $(2,3,6)$. The rest is all about arguing (1) what would reduce to this case and (2) why the rest do not.

It reminds me of the Aliquot sequence problem! To fully characterize the Aliquot sequence we just need to argue about (1) what would reduce to cycles (primes, amicible numbers or sociable numbers) and (2) what would runaway. Easy right? No. This is an open problem.

It is easy enough to argue $a_1$ must be even or else the prime unit fractions do not sum up to 1 and that keeps going creating infinite descent, but the rest is quite messy and troublesome, like showing that 3 must be a factor with power limits. Bleh.

Q5. Game with inequalities! It immediately becomes one of my favourites in recent years, although that does not tell anything in terms of difficulty. The "critical point" was deemed non-trivial on the AoPS post but I don't really think so.

Alice is maintaining the linear sum $\sum x_i \leq \lambda n$ while Bazza is maintaining the quadratic sum $\sum x_i^2 \leq n$. The way Alice defeats Bazza is by min-maxing: she can keep choosing zero and accumulate (the allowance of $\lambda n - \sum x_i$) until she can pull a big one to break the quadratic sum. The critical point is then $\sqrt{2}/2$ because the best Bazza can do is $\sqrt{2}$ so that the quadratic sum increases by the maximum amount aka 2.

After that it suffices to check the cases $\lambda$ above, below or equal to $\sqrt{2}/2$. And again I would say every step here logical and natural. The choice of $x_{2k} = \sqrt{2-x_{2k-1}^2}$ looks artificial but it's merely "the choice to stuff the quadratic sum". The beautiful ending to the problem is that the equal case is actually the combination of the winning strategies from both cases.

I love setup like this, but again is it too straightforward for a question 5?

Q6. Sometimes I am tired with "general case" combinatorics question. It is always nice to have a question where numbers are concrete and the answer is strongly relying on that number. Last year we had an "algo" problem using the number 2024 but such parameter can be so easily adjusted to any natural numbers. This 2025 is however different because it is a square number! This is probably the once in a lifetime chance for us to have a square number year when the next one is 91 years away. I am glad that they utilized the chance to put up a question like this.

And honestly I have zero idea on the question. The actual tiling is simple and beautiful. Considering how Q4 and 5 are easy I have again 3+ hours for Q6. In that case there will be a slim chance for me to come up with that optimal tiling, although I doubt if it helps in any way other than ending up with 1/7 or so. Erdos-Szekeres sounds way too advanced for IMO but almost every solution seem to use a version of that. It's a beautiful Q6, although I hope to see a real and slightly more elementary solution.

In overall IMO 2025 is special in many ways:
- An actual solvable Q3 and a Q4 that looks messier than Q3.
- Solvable questions can be done quickly allowing time to solve Q2,6
- 2 number theory problems in similar field (divisibility, power chasing)
- Ending with a "square" problem (kind of reminding me the 1988 Q6 which is also a "square" problem although 1988 isn't a square xD)

I really enjoy the problems this year, can't say anything further. I seemed to keep complaining Simon Marais problems but never did the same to IMO or Putnam. Perhaps this is the magic of collaborative efforts, hm?

Oh well, we will see again in 2026.

Update: I read news about OpenAI and google claimed that their ai made good progress with "gold medal" at 35 points. But is it that big of a progress though?

I am not sure if we can solve those question using commercial LLMs, but I would not doubt their ability to compare the score against historical performances:
Q3 is indeed much, much easier than historical mean. Comparing against 2005-2024 data, this is +2.3 in Z score and the highest in 20+ years. This is not only by students getting partial marks (for example, I imagine that knowing $f(p) = 1$ for large enough primes is easy and will get you 1/7 for sure), but also by astonishingly high 7/7 rate at 15%. 

Q5 is also fairly easy as expected with a Z-score of +1 in 2005-2024 data although it seemed to trend easier since 2018 or so:
In overall, Q1-Q5 are all easier than average. Q6 is harder than usual (0.143, Z-score of -0.85), and is among the hardest Q6 historically in terms of average score. But this is fine because Q6 is here to serve as the ultimate challenge anyway. 

The takeaway is, this set of problems is an outlier vs past difficulty, and has a significant gap between mid-hard problems and extremely hard problems. The gap of difficulty is precisely the right difficulty of questions where LLM progressed enough to be able to solve. The lack of such question renders OpenAI and google's "claim in progress" hollow.

Oh by the way the 1988 Q6 average score is 0.6 -- not exactly hard in this regard. Not the legendary level hard at least ;)

Thursday, 17 July 2025

16/7/2025: 世冠盃/數學番/AA/A

久違了的閒聊。

嘛,首要的大事當然是世冠盃決賽我車在地球保衛戰中清脆俐落地把大巴黎斬下馬呢。

說起來,我已經不記得上一次一年內熬夜兩次看球是哪年了。今年的兩次也就是兩個決賽,其餘晚場我根本懶得看,又或者看個半場也就剛好對上美股收市,不能算真正熬到天亮那種熬夜。

幸運的是這兩次熬夜都得到對應的回報,還是說這回報過於甜蜜了?全世界都知道我車鋒無力,但大概都沒有誰料到有個正常前鋒後戰鬥力居然直接提升了兩檔。其實浪費機會的可不只有Jackson,還有Nkunku可是上季全歐浪費最多xG的人呢。這兩個中游球隊來的前鋒,一看就知道全身功夫都為禁區肉縛和最後一擊而練,我車缺的就是這種人,讚啦。

至於大家吵得臉紅耳赤的「含金量」問題,我是覺得沒甚麼好吵的。名譽上肯定要叫自己世界冠軍啊。以前的世俱盃贏了都叫自己世界冠軍了,現在這個怎麼不可以?你說歐冠有足夠的歐洲球隊世冠盃沒有?那巴西球隊贏了歐洲的三四場是怎麼回事?世冠盃也有32支球隊,勁旅的數量也夠了啊。不服的話你下屆自己進來試試看?

真正有爭議的競技強度。6、7月歐洲剛好放暑假,南美卻是季中打得火熱的季節。有辦法能證明歐洲球隊輸球是因為競技狀態不足嗎?錢到位球員教練球隊拼命是肯定的,但實際效果可能略有出入。當然歐洲季中也不能保證狀態,不過預期上總比季後再拉來打好不是嗎。這方面我不敢亂說,應該要用上數據科學才能下判斷。

最後一點,說說這比賽的未來。球隊最高達一億美元的分成任誰都會心動,這也是賽事被如此看重的原因之一。漂亮的營收加上川皇加持,這屆比賽算是空前的成功,也吸引了大量國家競投下一輪主辦權。對此我還是懷疑這比賽真的有這麼吸金嗎?如果不是美國的巨型球場、人口基數和消費能力,營收能達到這個高度嗎?我是不太看好,不過如果以後一直放美國舉行的話能有這種成續我也不意外,放其他地方就別想了。

*

身為數學家,看到這季新番可是想當興奮,原因正是本季足有兩套「數學」番。

如果只看列表應該會有點疑惑,第二套「數學」番是哪部啊?

Silent Witch沉默魔女。


雖然單憑人家叫了一聲數學博士就把這歸成數學番有點奇怪,不過至少把女主稱為數學腦絕對不為過,那個思考方式真的是做數學的才會有。配上其超級內向的性格,我們可稱之為--數學小孤獨。

沒錯,這番就是講一個數學小孤獨扮豬吃老虎走向人生巔峰的故事。

扮豬吃虎、魔法世界這種題材每季都有,但這部作畫細膩、劇情合理張弛有度、顏藝到位、聲優陣容豪華,在不涉及劇情下已經很難再給予進一步的讚美。看了兩集目前個人評分為7.2/10,算非常高分了(雖然我已好幾年沒在這邊放上完整評分表),絕對值得大家去試看。

另一部數學番是費馬的料理,聽名字就就知道是數學x美食的番。

……等等,這不就是我嗎?

進去看不到十分鐘,看到男主用座標硬爆幾何題被白毛嗆怎不用軌跡和不變量解題,說他也就這樣云云。

……欸等等,這真不是我嗎?

本來看到專業等級的數學對談還以為有人真敢把這些搬進動畫裡給廣大觀眾看,沒想到兩集看下來是這樣--

我、北田岳、上輩子讀數學庸庸碌碌只能當牛馬,最終累到被卡車送走。

重生到高中時期的我只想把舊路再走一次。以為可以靠前世的積累拿下競賽席次,怎料看見天才們的境界後才知道自己真的不是那塊料子,甚至在考試中直接崩掉。

本來被寄予厚望的我被記恨的學園長處處針對,獎學金被要求退還,還被逼去食堂打工。就在此時--

「叮!至尊美食系統激活中……」

只要嘗過一次的美味就能記住,甚至還能反推菜式的秘密?每日簽到就能拿到菜譜,消費點數就能拿到討好客人的提示?

本來想著低調發育的我本來還想對外還想說是用數學倒推,沒想到食堂打工第一天就被年紀輕輕就拿星的天才廚師識破?

一場未曾設想的剌激美食之旅就此展開--

……

聽上去很像上架後二百話以內完結的網文,但這的確是我看了兩集的感覺。在同一集內看見專業真實的幾何吐糟和用類似函數關係的草圖就能倒推出料理關鍵步驟這兩種截然不同的數學內容,絕對能引起觀眾帶來尷尬而不失禮貌的微笑。

其實本季的好番和題材真不少,有機會我再來寫吧^.^

*

既然要寫日記,那就補兩句DDR好了。

最近不是出了AA的csp譜嗎?我記得我做過AA的太鼓譜,覺得這DDR譜很像我過去會做的太鼓圖。一翻下去發現我做的不是AA而是AAA,風格完全不像我所想像的東西。我那AAA譜面一點都不流暢,虧那還是我代表作Holy Moon半年後才做的圖,那都是甚麼鬼啊……

Thursday, 3 July 2025

網絡隨心巡記(2): 三崎港→函館

當我新開這個系列的時候,我完全沒有料到這個系列會有第二集。當時我只是把這當成一種讓有借口寫我這種形式的隨筆而已。以下這個隨心遊記同樣隨心隨機,一切所記之事皆屬偶然。

*

1) 三崎港

跟朋友吃飯,電視正播放日本料理巡遊的節目。這一集介紹的是三崎港。這我可熟了,京急的老熟人,還有那用電池漲起的平板點餐的迴轉壽司連鎖店,我怎可能不熟呢?

這次介紹的是某位山田老兄的餐廳。只見他端出他的招牌菜,烤巨型吞拿魚頭。他先給吞拿魚祈福,然後用純熟的手法用純熟的手法把魚頭解體成腦天、魚眼、面頰等部位。每個部位各有不同的口感吃法,讓人看了就流口水。

……沒錯了。

我衝口而出:「我認識這家餐廳和這位老兄。」

2) 愛の貧乏脱出大作戦

如果我是在其他料理節目中看過這家餐廳就算了,偏偏這餐廳出自愛の貧乏脱出大作戦,中文叫拯救貧窮大作戰。

說到料理節目這一塊日本似乎比西方走得更前。當他們在玩鐵人料理和拯救貧窮大作戰的時候拍Master Chef和Kitchen Nightmares的戈登還是個毛頭小子呢。

某一年台灣買了版權回來播,既便距離拍攝當年已經有15年左右,這劇集居然在台灣掀起了不小的熱度。看看中文版維基的詳盡程度就知道了,一般的番組可沒有這種狂粉喔?既然提到了這檔節目,我當然也是粉絲之一。節目裡的貧窮店沒記得多少,達人店倒是很有印象。至少那時候對所謂達人店有多好吃是很有憧憬的。

現在的大多數人自是不會認識這檔節目的,我只好跟朋友聊三崎港坐京急去很方便云云,但我心裡卻一直想著趁我還記得回家搜一下:距離上次檢查又過了好幾年,到底有哪些店還活著呢?

3) Tabelog

二十年前沒有這東西,現在總有了吧?到底達人店有多好吃,一查不就知道了。

原來一些達人的店也不能算最頂級,不過當然這有點過於嚴苛。要找一家肯花幾天幾夜(按照傳聞的話可不只幾天)全心教你的店主也不容易啊。

順帶一提,山田桑的店的分數是3.6,算不錯了。

4) 南醬

拯救貧窮大作戰的超級爭議人物之一。

其實能夠經營不善到被節目挑上,店主多半都有點毛病。比如說不講衛生、味覺跟一般人不同、對無關的事異常執著等等。南醬特別就特別在所有毛病都有一點,偏偏又沒很過份,加上他那不溫不火的性格和辦事調子,除了可以直接DQ他的達人以外大部分人都拿他沒辦法。

偏偏他通過補修,可以賣學來的四五六拉麵了。

偏偏貧乏店的存活率這麼低,這家店卻活下來了。頂著被霸凌的壓力,南醬的拉麵或許不是最好吃的,但他確實找到能讓自己這店活下去的方法。這家在函館開的拉麵小店最後靠俄羅斯遊客活了快二十年,還不是被經營狀況壓倒的,這個傳奇算是有個圓滿的結局吧。

*

其實我想到南醬並不單純因為他是這節目的指標性人物,也是因為在愛の貧乏的非官方資料庫最頂看到一條訃聞。才看到第一個み字我想到南醬,而youtube的搜尋建議上「愛の貧乏脱出大作戦 みなみちゃん 死去」這條也的確排很前。考慮到南醬幾年前身體就很差了,現在出事好像也不是很意外。

事實當然不是這樣。嘛,現在南醬的確實狀況也沒人知道,但資料庫上說的卻是另一個同樣重要的番組成員--

2025/03/01 みのもんたさん逝去。ご冥福をお祈りいたします。